121
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Identification of potent inhibitors targeting Tribolium castaneum GSTe2 via structure-based screening and molecular dynamics simulation

, , , &
Received 12 Sep 2023, Accepted 10 Jan 2024, Published online: 24 Jan 2024

References

  • Abel, E. L., Bammler, T. K., & Eaton, D. L. (2004). Biotransformation of methyl parathion by glutathione S-transferases. Toxicological Sciences, 79(2), 224–232. https://doi.org/10.1093/toxsci/kfh118
  • Baker, E. N. (2001). Hydrogen bonding in biological macromolecules. In M. G. Rossmann & E. Arnold (Eds.), International Tables for Crystallography Volume F: Crystallography of biological macromolecules. (pp. 546–552). Springer Netherlands.
  • Balcı, N., Şakiroğlu, H., Türkan, F., & Bursal, E. (2022). In vitro and in silico enzyme inhibition effects of some metal ions and compounds on glutathione S-transferase enzyme purified from Vaccinium arctostapylous L. Journal of Biomolecular Structure & Dynamics, 40(22), 11587–11593. https://doi.org/10.1080/07391102.2021.1960893
  • Campbell, J. F., Athanassiou, C. G., Hagstrum, D. W., & Zhu, K. Y. (2022). Tribolium castaneum: A model insect for fundamental and applied research. Annual Review of Entomology, 67(1), 347–365. https://doi.org/10.1146/annurev-ento-080921-075157
  • Cerqueira, A. P. M., Santana, I. B., Araújo, J. S. C., Lima, H. G., Batatinha, M. J. M., Branco, A., Santos Junior, M. C. D., & Botura, M. B. (2022). Homology modeling, docking, molecular dynamics and in vitro studies to identify Rhipicephalus microplus acetylcholinesterase inhibitors. Journal of Biomolecular Structure & Dynamics, 40(15), 6787–6797. https://doi.org/10.1080/07391102.2021.1889666
  • Chen, X. Y., Liu, J., Zhang, C. D., Li, Y. F., Liu, T. H., Wang, L., Yu, Q. Y., Zhang, Y. H., Lu, C., & Pan, M. H. (2015). The silkworm GSTe4 is sensitive to phoxim and protects HEK293 cells against UV-induced cell apoptosis. Bulletin of Entomological Research, 105(4), 399–407. https://doi.org/10.1017/S0007485315000279
  • Crisan, L., Funar-Timofei, S., & Borota, A. (2022). Homology modeling and molecular docking approaches for the proposal of novel insecticides against the African Malaria Mosquito (Anopheles gambiae). Molecules (Basel, Switzerland), 27(12), 3846. https://doi.org/10.3390/molecules27123846
  • Davoudmanesh, S., & Mosaabadi, J. M. (2018). Investigation of the effect of homocysteinylation of substance P on its binding to the NK1 receptor using molecular dynamics simulation. Journal of Molecular Modeling, 24(7), 177. https://doi.org/10.1007/s00894-018-3695-7
  • Dehury, B., Patra, M. C., Maharana, J., Sahu, J., Sen, P., Modi, M. K., Choudhury, M. D., & Barooah, M. (2014). Structure-based computational study of two disease resistance gene homologues (Hm1 and Hm2) in maize (Zea mays L.) with implications in plant-pathogen interactions. PloS One, 9(5), e97852. https://doi.org/10.1371/journal.pone.0097852
  • Dong, L., Shen, S., Jiang, X., Liu, Y., Li, J., Chen, W., Wang, Y., Shi, J., Liu, J., Ma, S., Zhang, L., Dong, J., & Yang, Q. (2022). Discovery of Azo-aminopyrimidines as novel and potent chitinase OfChi-h inhibitors via structure-based virtual screening and rational lead optimization. Journal of Agricultural and Food Chemistry, 70(38), 12203–12210. https://doi.org/10.1021/acs.jafc.2c03997
  • Du, X., Li, Y., Xia, Y.-L., Ai, S.-M., Liang, J., Sang, P., Ji, X.-L., & Liu, S.-Q. (2016). Insights into protein-ligand interactions: mechanisms, models, and methods. International Journal of Molecular Sciences, 17(2), 144. https://doi.org/10.3390/ijms17020144
  • Duan, C., Jiang, Q., Jiang, X., Zeng, H., Wu, Q., Yu, Y., & Yang, X. (2022). Discovery of a novel inhibitor structure of Mycobacterium tuberculosis isocitrate lyase. Molecules (Basel, Switzerland), 27(8), 2447. https://doi.org/10.3390/molecules27082447
  • Elmezayen, A. D., & Yelekçi, K. (2021). Homology modeling and in silico design of novel and potential dual-acting inhibitors of human histone deacetylases HDAC5 and HDAC9 isozymes. Journal of Biomolecular Structure & Dynamics, 39(17), 6396–6414. https://doi.org/10.1080/07391102.2020.1798812
  • Enya, S., Ameku, T., Igarashi, F., Iga, M., Kataoka, H., Shinoda, T., & Niwa, R. (2014). A Halloween gene noppera-bo encodes a glutathione S-transferase essential for ecdysteroid biosynthesis via regulating the behaviour of cholesterol in Drosophila. Scientific Reports, 4(1), 6586. https://doi.org/10.1038/srep06586
  • Faure, G., Joseph, A. P., Craveur, P., Narwani, T. J., Srinivasan, N., Gelly, J.-C., Rebehmed, J., & de Brevern, A. G. (2019). iPBAvizu: A PyMOL plugin for an efficient 3D protein structure superimposition approach. Source Code for Biology and Medicine, 14(1), 5. doi:ARTN 5 https://doi.org/10.1186/s13029-019-0075-3
  • Gao, S., Liu, K., Liu, H., Yin, S., Guo, X., Zhang, Y., Zhang, K., & Li, R. (2022). Functional analysis of a cytochrome P450 gene CYP9Z6 responding to terpinen-4-ol in the red flour beetle, Tribolium castaneum. Pesticide Biochemistry and Physiology, 183, 105065. https://doi.org/10.1016/j.pestbp.2022.105065
  • García-Gutiérrez, P., Zubillaga, R. A., Téllez-Plancarte, A., Flores-López, R., Camarillo-Cadena, M., & Landa, A. (2020). Discovery of a new non-substrate inhibitor of the 26.5 kDa glutathione transferase from Taenia solium by virtual screening. Journal of Molecular Graphics & Modelling, 100, 107707. https://doi.org/10.1016/j.jmgm.2020.107707
  • Gong, C., Liu, M., Liu, D., Wang, Q., Hasnain, A., Zhan, X., Pu, J., Liang, Y., Liu, X., & Wang, X. (2022). Status of fungicide resistance and physiological characterization of tebuconazole resistance in Rhizocotonia solani in Sichuan Province, China. Current Issues in Molecular Biology, 44(10), 4859–4876. https://doi.org/10.3390/cimb44100330
  • Helvecio, E., Romão, T. P., de Carvalho-Leandro, D., de Oliveira, I. F., Cavalcanti, A. E. H. D., Reimer, L., de Paiva Cavalcanti, M., de Oliveira, A. P. S., Paiva, P. M. G., Napoleão, T. H., Wallau, G. L., de Melo Neto, O. P., Melo-Santos, M. A. V., & Ayres, C. F. J. (2020). Polymorphisms in GSTE2 is associated with temephos resistance in Aedes aegypti. Pesticide Biochemistry and Physiology, 165, 104464. https://doi.org/10.1016/j.pestbp.2019.10.002
  • Huang, H.-S., Hu, N.-T., Yao, Y.-E., Wu, C.-Y., Chiang, S.-W., & Sun, C.-N. (1998). Molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the diamondback moth, Plutella xylostella. Insect Biochemistry and Molecular Biology, 28(9), 651–658. https://doi.org/10.1016/S0965-1748(98)00049-6
  • Hu, B., Hu, S., Huang, H., Wei, Q., Ren, M., Huang, S., Tian, X., & Su, J. (2019). Insecticides induce the co-expression of glutathione S-transferases through ROS/CncC pathway in Spodoptera exigua. Pesticide Biochemistry and Physiology, 155, 58–71. https://doi.org/10.1016/j.pestbp.2019.01.008
  • Hu, C., Liu, J. Y., Wang, W., Mota-Sanchez, D., He, S., Shi, Y., & Yang, X. Q. (2022). Glutathione S-transferase genes are involved in lambda-cyhalothrin resistance in Cydia pomonella via Sequestration. Journal of Agricultural and Food Chemistry, 70(7), 2265–2279. https://doi.org/10.1021/acs.jafc.2c00360
  • Irwin, J. J., Tang, K. G., Young, J., Dandarchuluun, C., Wong, B. R., Khurelbaatar, M., Moroz, Y. S., Mayfield, J., & Sayle, R. A. (2020). ZINC20—a free ultralarge-scale chemical database for ligand discovery. Journal of Chemical Information and Modeling, 60(12), 6065–6073. https://doi.org/10.1021/acs.jcim.0c00675
  • Jha, P., Chaturvedi, S., Bhat, R., Jain, N., & Mishra, A. K. (2022). Insights of ligand binding in modeled h5-HT(1A) receptor: Homology modeling, docking, MM-GBSA, screening and molecular dynamics. Journal of Biomolecular Structure & Dynamics, 40(22), 11625–11637. https://doi.org/10.1080/07391102.2021.1961865
  • Kar, B., Kundu, C. N., Pati, S., & Bhattacharya, D. (2021). Discovery of phyto-compounds as novel inhibitors against NDM-1 and VIM-1 protein through virtual screening and molecular modelling. Journal of Biomolecular Structure & Dynamics, 41(4), 1267–1280. https://doi.org/10.1080/07391102.2021.2019125
  • Kim, K., Song, X., Yu, R., Zhang, Y., Gao, H., Wang, S., & Li, B. (2023). A novel GSTe2 involved in metamorphosis by regulating 20E signal pathway in Tribolium castaneum. Archives of Insect Biochemistry and Physiology, 112(3), e21989. https://doi.org/10.1002/arch.21989
  • Kumar, A., Novak, J., Singh, A. K., Singh, H., Thareja, S., Pathak, P., Grishina, M., Verma, A., & Kumar, P. (2023). Virtual screening, structure based pharmacophore mapping, and molecular simulation studies of pyrido[2,3-d]pyrimidines as selective thymidylate synthase inhibitors. Journal of Biomolecular Structure & Dynamics, 41(23), 14197–14211. https://doi.org/10.1080/07391102.2023.2208205
  • Liao, M., Xiao, J.-J., Zhou, L.-J., Liu, Y., Wu, X.-W., Hua, R.-M., Wang, G.-R., & Cao, H.-Q. (2016). Insecticidal activity of Melaleuca alternifolia essential oil and RNA-Seq analysis of Sitophilus zeamais transcriptome in response to oil fumigation. PloS One, 11(12), e0167748. https://doi.org/10.1371/journal.pone.0167748
  • Lis, Ł. B., Bakuła, T., Baranowski, M., & Czarnewicz, A. (2011). The carcinogenic effects of benzoquinones produced by the flour beetle. Polish Journal of Veterinary Sciences, 14(1), 159–164. https://doi.org/10.2478/v10181-011-0025-8
  • Liu, S., Liu, F., Jia, H., Yan, Y., Wang, H., Guo, X., & Xu, B. (2016). A glutathione S-transferase gene associated with antioxidant properties isolated from Apis cerana. Die Naturwissenschaften, 103(5-6), 43. https://doi.org/10.1007/s00114-016-1362-3
  • Li, X., Xu, Y., Liu, J., Yu, X., Zhang, W., & You, C. (2022). Biological activities and gene expression of detoxifying enzymes in Tribolium castaneum induced by Moutan cortex essential oil. Journal of Toxicology and Environmental Health. Part A, 85(14), 591–602. https://doi.org/10.1080/15287394.2022.2066038
  • Lu, X. P., Wang, L. L., Huang, Y., Dou, W., Chen, C. T., Wei, D., & Wang, J. J. (2016). The epsilon glutathione S-transferases contribute to the malathion resistance in the oriental fruit fly, Bactrocera dorsalis (Hendel). Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 180, 40–48. https://doi.org/10.1016/j.cbpc.2015.11.001
  • Ma, S., Ma, T., Ren, M., Li, H., & Ma, Z. (2021). Insecticidal action of the botanical insecticide wilforine on Mythimna separata (Walker) related with the changes of ryanodine receptor expression. Ecotoxicology and Environmental Safety, 213, 112025. https://doi.org/10.1016/j.ecoenv.2021.112025
  • Monaco, R., Friedman, F. K., Hyde, M. J., Chen, J. M., Manolatus, S., Adler, V., Ronai, Z., Koslosky, W., & Pincus, M. R. (1999). Identification of a glutathione-S-transferase effector domain for inhibition of jun kinase, by molecular dynamics. Journal of Protein Chemistry, 18(8), 859–866. https://doi.org/10.1023/a:1020679229110
  • Nejabat, M., Hadizadeh, F., Nejabat, M., & Rajabi, O. (2023). Novel hits for autosomal dominated polycystic kidney disease (ADPKD) targeting derived by in silico screening on ZINC-15 natural product database. Journal of Biomolecular Structure & Dynamics, 1–18. https://doi.org/10.1080/07391102.2023.2196700
  • Nejabat, M., Soltani, F., Alibolandi, M., Nejabat, M., Abnous, K., Hadizadeh, F., & Ramezani, M. (2022). Smac peptide and doxorubicin-encapsulated nanoparticles: Design, preparation, computational molecular approach and in vitro studies on cancer cells. Journal of Biomolecular Structure & Dynamics, 40(2), 807–819. https://doi.org/10.1080/07391102.2020.1819420
  • Rangubpit, W., Suwan, E., Sangthong, D., Wongpanit, K., Stich, R. W., Pongprayoon, P., & Jittapalapong, S. (2022). Observing how glutathione and S-hexyl glutathione bind to glutathione S-transferase from Rhipicephalus (Boophilus) microplus. International Journal of Molecular Sciences, 23(21), 12775. https://doi.org/10.3390/ijms232112775
  • Reddy, B. P., Prasad, G. B., & Raghavendra, K. (2011). In silico analysis of glutathione S-transferase supergene family revealed hitherto unreported insect specific delta- and epsilon-GSTs and mammalian specific mu-GSTs in Ixodes scapularis (Acari: Ixodidae). Computational Biology and Chemistry, 35(2), 114–120. https://doi.org/10.1016/j.compbiolchem.2011.03.004
  • Sargsyan, K., Grauffel, C., & Lim, C. (2017). How molecular size impacts RMSD applications in molecular dynamics simulations. Journal of Chemical Theory and Computation, 13(4), 1518–1524. https://doi.org/10.1021/acs.jctc.7b00028
  • Shahwan, M., Hassan, N., Ashames, A., Alrouji, M., Alhumaydhi, F., Al Abdulmonem, W., Muhsinah, A. B., Furkan, M., Khan, R. H., Shamsi, A., & Atiya, A. (2023). PF543-like compound, a promising sphingosine kinase 1 inhibitor: Structure-based virtual screening and molecular dynamic simulation approaches. International Journal of Biological Macromolecules, 248, 126399. https://doi.org/10.1016/j.ijbiomac.2023.125466
  • Shishido, Y., Tomoike, F., Kuwata, K., Fujikawa, H., Sekido, Y., Murakami-Tonami, Y., Kameda, T., Abe, N., Kimura, Y., Shuto, S., & Abe, H. (2019). A covalent inhibitor for glutathione S-transferase Pi (GSTP(1-1)) in human cells. Chembiochem: A European Journal of Chemical Biology, 20(7), 900–905. https://doi.org/10.1002/cbic.201800671
  • Song, X., Pei, L., Zhang, Y., Chen, X., Zhong, Q., Ji, Y., Tang, J., Feng, F., & Li, B. (2020). Functional diversification of three delta-class glutathione S-transferases involved in development and detoxification in Tribolium castaneum. Insect Molecular Biology, 29(3), 320–336. https://doi.org/10.1111/imb.12637
  • Song, X.-W., Zhong, Q.-S., Ji, Y.-H., Zhang, Y.-M., Tang, J., Feng, F., Bi, J.-X., Xie, J., & Li, B. (2021). Characterization of a sigma class GST (GSTS6) required for cellular detoxification and embryogenesis in Tribolium castaneum. Insect Science, 29(1), 215–229. https://doi.org/10.1111/1744-7917.12930
  • Song, X., Zhong, Q., Peng, G., Ji, Y., Zhang, Y., Tang, J., Xie, J., Bi, J., Feng, F., & Li, B. (2020). Functional characterization of a special dicistronic transcription unit encoding histone methyltransferase su(var)3-9 and translation regulator eIF2gamma in Tribolium castaneum. The Biochemical Journal, 477(16), 3059–3074. https://doi.org/10.1042/BCJ20200444
  • Sterling, T., & Irwin, J. J. (2015). ZINC 15–ligand discovery for everyone. Journal of Chemical Information and Modeling, 55(11), 2324–2337. https://doi.org/10.1021/acs.jcim.5b00559
  • Sun, L., Yin, J., Du, H., Liu, P., & Cao, C. (2020). Characterisation of GST genes from the Hyphantria cunea and their response to the oxidative stress caused by the infection of Hyphantria cunea nucleopolyhedrovirus (HcNPV). Pesticide Biochemistry and Physiology, 163, 254–262. https://doi.org/10.1016/j.pestbp.2019.11.019
  • Wang, W., Li, X., Wang, Q., Zhu, X., Zhang, Q., & Du, L. (2018). The acidic pH-induced structural changes in apo-CP43 by spectral methodologies and molecular dynamics simulations. Journal of Molecular Structure. 1152, 177–188. https://doi.org/10.1016/j.molstruc.2017.09.082
  • Wang, Y., Qiu, L., Ranson, H., Lumjuan, N., Hemingway, J., Setzer, W. N., Meehan, E. J., & Chen, L. (2008). Structure of an insect epsilon class glutathione S-transferase from the malaria vector Anopheles gambiae provides an explanation for the high DDT-detoxifying activity. Journal of Structural Biology, 164(2), 228–235. https://doi.org/10.1016/j.jsb.2008.08.003
  • Yamamoto, K., Aso, Y., & Yamada, N. (2013). Catalytic function of an epsilon-class glutathione S-transferase of the silkworm. Insect Molecular Biology, 22(5), 523–531. https://doi.org/10.1111/imb.12041
  • Zhong, S., Zhang, Z., Guo, Z., Yang, W., Dou, G., Lv, X., Wang, X., Ge, J., Wu, B., Pan, X., Wang, H., & Mou, Y. (2022). Identification of novel natural inhibitors targeting AKT Serine/Threonine Kinase 1 (AKT1) by computational study. Bioengineered, 13(5), 12003–12020. https://doi.org/10.1080/21655979.2021.2011631

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.