144
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring plant-derived small molecules as inhibitors of Marburg virus RNA binding protein activity

ORCID Icon, , , ORCID Icon & ORCID Icon
Received 08 Nov 2023, Accepted 10 Jan 2024, Published online: 25 Jan 2024

References

  • Abir, M. H., Rahman, T., Das, A., Etu, S. N., Nafiz, I. H., Rakib, A., Mitra, S., Emran, T. B., Dhama, K., Islam, A., Siyadatpanah, A., Mahmud, S., Kim, B., & Hassan, M. M. (2022). Pathogenicity and virulence of Marburg Virus. Virulence, 13(1), 609–633. https://doi.org/10.1080/21505594.2022.2054760
  • Alandijany, T. A., El-Daly, M. M., Tolah, A. M., Bajrai, L. H., Khateb, A. M., Kumar, G. S., Dubey, A., Dwivedi, V. D., & Azhar, E. I. (2023). A multi-targeted computational drug discovery approach for repurposing tetracyclines against Monkeypox Virus. Scientific Reports, 13(1), 14570. https://doi.org/10.1038/s41598-023-41820-z
  • Alsaady, I. M., Bajrai, L. H., Alandijany, T. A., Gattan, H. S., El-Daly, M. M., Altwaim, S. A., Alqawas, R. T., Dwivedi, V. D., & Azhar, E. I. (2023). Cheminformatics strategies unlock Marburg virus VP35 inhibitors from Natural Compound Library. Viruses, 15(8), 1739. https://doi.org/10.3390/v15081739
  • Bale, S., Julien, J.-P., Bornholdt, Z. A., Kimberlin, C. R., Halfmann, P., Zandonatti, M. A., Kunert, J., Kroon, G. J., Kawaoka, Y., & MacRae, I. J. (2012). Marburg virus VP35 can both fully coat the backbone and cap the ends of dsRNA for interferon antagonism.
  • Basler, C. F., Mikulasova, A., Martinez-Sobrido, L., Paragas, J., Mühlberger, E., Bray, M., Klenk, H.-D., Palese, P., & García-Sastre, A. (2003). The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3. Journal of Virology, 77(14), 7945–7956. https://doi.org/10.1128/jvi.77.14.7945-7956.2003
  • Basler, C. F., Wang, X., Mühlberger, E., Volchkov, V., Paragas, J., Klenk, H.-D., García-Sastre, A., & Palese, P. (2000). The Ebola Virus VP35 protein functions as a type I IFN antagonist. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 12289–12294. https://doi.org/10.1073/pnas.220398297
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., & Sacerdoti, F. D. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters.; pp. 84. es.
  • Cárdenas, W. B., Loo, Y.-M., Gale, M., Jr, Hartman, A. L., Kimberlin, C. R., Martínez-Sobrido, L., Saphire, E. O., & Basler, C. F. (2006). Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. Journal of Virology, 80(11), 5168–5178. https://doi.org/10.1128/JVI.02199-05
  • Chen, I.-J., & Foloppe, N. (2010). Drug-like bioactive structures and conformational coverage with the LigPrep/ConfGen suite: Comparison to programs MOE and catalyst. Journal of Chemical Information and Modeling, 50(5), 822–839. https://doi.org/10.1021/ci100026x
  • Cragg, G. M., & Newman, D. J. (2013). Natural products: A continuing source of novel drug leads. Biochimica et Biophysica Acta, 1830(6), 3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008
  • Daino, G. L., Frau, A., Sanna, C., Rigano, D., Distinto, S., Madau, V., Esposito, F., Fanunza, E., Bianco, G., Taglialatela-Scafati, O., Zinzula, L., Maccioni, E., Corona, A., & Tramontano, E. (2018). Identification of myricetin as an Ebola virus VP35–double-stranded RNA interaction inhibitor through a novel fluorescence-based assay. Biochemistry, 57(44), 6367–6378. https://doi.org/10.1021/acs.biochem.8b00892
  • Dehdari, S., & Hajimehdipoor, H. (2018). Medicinal properties of Adiantum Capillus-Veneris Linn. in traditional medicine and modern phytotherapy: A review article. Iranian Journal of Public Health, 47(2), 188–197.
  • Edwards, M. R., Liu, G., Mire, C. E., Sureshchandra, S., Luthra, P., Yen, B., Shabman, R. S., Leung, D. W., Messaoudi, I., Geisbert, T. W., Amarasinghe, G. K., & Basler, C. F. (2016). Differential regulation of interferon responses by Ebola and Marburg virus VP35 proteins. Cell Reports, 14(7), 1632–1640. https://doi.org/10.1016/j.celrep.2016.01.049
  • Evans, D. J., & Holian, B. L. (1985). The Nose–Hoover thermostat. The Journal of Chemical Physics, 83(8), 4069–4074. https://doi.org/10.1063/1.449071
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Gattan, H. S., Mahmoud Alawi, M., Bajrai, L. H., Alandijany, T. A., Alsaady, I. M., El-Daly, M. M., Dwivedi, V. D., & Azhar, E. I. (2023). A multifaceted computational approach to understanding the MERS-CoV main protease and brown algae compounds’ interaction. Marine Drugs, 21(12), 626. https://doi.org/10.3390/md21120626
  • Grant, B. J., Rodrigues, A. P., ElSawy, K. M., McCammon, J. A., & Caves, L. S. (2006). Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics (Oxford, England), 22(21), 2695–2696. https://doi.org/10.1093/bioinformatics/btl461
  • Hariprasath, R., Akashpriya, C., Lakshmaiah, V. V., & Praveen, N. (2022). In silico studies of viral protein inhibitors of Marburg virus using phytochemicals from Andrographis Paniculata. Journal of Applied Biology & Biotechnology, 11, 222–231. https://doi.org/10.7324/JABB.2023.110121
  • Ke, Q., Gong, X., Liao, S., Duan, C., & Li, L. (2022). Effects of thermostats/barostats on physical properties of liquids by molecular dynamics simulations. Journal of Molecular Liquids, 365, 120116. https://doi.org/10.1016/j.molliq.2022.120116
  • Klemow, K. M., Bartlow, A., Crawford, J., Kocher, N., Shah, J., & Ritsick, M. (2011). Medical attributes of St. John’s Wort (Hypericum Perforatum). In Benzie, I.F.F., & Wachtel-Galor, S., (Eds.), Herbal medicine: Biomolecular and clinical aspects. CRC Press/Taylor & Francis.
  • Leroy, E., Gonzalez, J.-P., & Baize, S. (2011). Ebola and Marburg haemorrhagic fever viruses: Major scientific advances, but a relatively minor public health threat for Africa. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 17(7), 964–976. https://doi.org/10.1111/j.1469-0691.2011.03535.x
  • Leung, D. W., Prins, K. C., Basler, C. F., & Amarasinghe, G. K. (2010). Ebolavirus VP35 is a multifunctional virulence factor. Virulence, 1(6), 526–531. https://doi.org/10.4161/viru.1.6.12984
  • LigPrep Schrödinger Release 2020-4: LigPrep. (2020). Schrödinger, LLC, New York, NY
  • Mohanraj, K., Karthikeyan, B. S., Vivek-Ananth, R. P., Chand, R. P. B., Aparna, S. R., Mangalapandi, P., & Samal, A. (2018). IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Scientific Reports, 8(1), 4329. https://doi.org/10.1038/s41598-018-22631-z
  • Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
  • Quazi, S., Malik, J., Capuzzo, A. M., Suman, K. S., & Haider, Z. (2021). In-silico structural and molecular docking-based drug discovery against viral protein (VP35) of Marburg virus: A potent agent of MAVD. bioRxiv, 2021–2002.
  • Schrödinger Release 2020-4: Desmond Molecular Dynamics System. (2020). D. E. Shaw Research, New York, NY. Maestro-Desmond Interoperability Tools, Schrödinger, New York NY.
  • Schrödinger Release 2020-4: Glide. (2020). Schrödinger, LLC.
  • Schrödinger Release 2020-4: Maestro. (2020). Schrödinger, LLC New York, NY.
  • Schrödinger Release 2020-4: Prime. (2020). Schrödinger, LLC.
  • Schrödinger Release 2020-4: Protein Preparation Wizard. (2020). Epik, Schrödinger, LLC. Impact., Schrödinger, LLC. Prime, Schrödinger, LLC, New York, NY.
  • Shanees, E. (2022). Marburg virus disease. International Journal of Nursing Education and Research, 10, 403–405. https://doi.org/10.52711/2454-2660.2022.00091
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519. https://doi.org/10.1021/ct900587b
  • Soni, N., Dinda, A., & Kumar, V. (2022). An integrative approach to harnessing the potential of traditional Indian medicinal plants for acute viral infections. Journal of Herbal Medicine, 33, 100559. https://doi.org/10.1016/j.hermed.2022.100559
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/nar/gky473
  • Zhu, W., Liu, G., Cao, W., He, S., Leung, A., Ströher, U., Fairchild, M. J., Nichols, R., Crowell, J., Fusco, J., & Banadyga, L. (2022). A cloned recombinant vesicular stomatitis virus-vectored marburg vaccine, PHV01, protects Guinea pigs from lethal Marburg virus disease. Vaccines, 10(7), 1004. https://doi.org/10.3390/vaccines10071004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.