78
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A comprehensive integrated gene network construction to explore the essential role of Notch 1 in lung adenocarcinoma (LUAD)

&
Received 16 Aug 2023, Accepted 10 Jan 2024, Published online: 28 Jan 2024

References

  • Allen, T. D., Rodriguez, E. M., Jones, K. D., & Bishop, J. M. (2011). Activated Notch1 induces lung adenomas in mice and cooperates with Myc in the generation of lung adenocarcinoma. Cancer Research, 71(18), 6010–6018. https://doi.org/10.1158/0008-5472.CAN-11-0595
  • Aravindan, N., Herman, T., & Aravindan, S. (2020). Emerging therapeutic targets for neuroblastoma. Expert Opinion on Therapeutic Targets, 24(9), 899–914. https://doi.org/10.1080/14728222.2020.1790528
  • Article, R., & Series, B. (2022). Review article: Biomarker series MET: A narrative review of exon 14 skipping mutation in non‑small‑cell lung carcinoma. Cancer Research, Statistics and Treatment, 97–104. https://doi.org/10.4103/crst.crst
  • Ashok, G., Miryala, S. K., Anbarasu, A., & Ramaiah, S. (2021). Integrated systems biology approach using gene network analysis to identify the important pathways and new potential drug targets for Neuroblastoma. Gene Reports, 23(February), 101101. https://doi.org/10.1016/j.genrep.2021.101101
  • Ashok, G., Miryala, S. K., Saju, M. T., Anbarasu, A., & Ramaiah, S. (2022). FN1 encoding fibronectin as a pivotal signaling gene for therapeutic intervention against pancreatic cancer. Molecular Genetics and Genomics: MGG, 297(6), 1565–1580. https://doi.org/10.1007/s00438-022-01943-w
  • Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., Marshall, K. A., Phillippy, K. H., Sherman, P. M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C. L., Serova, N., Davis, S., & Soboleva, A. (2013). NCBI GEO: Archive for functional genomics data sets - Update. Nucleic Acids Research, 41(Database issue), D991–D995. https://doi.org/10.1093/nar/gks1193
  • Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., Jacobsen, A., Byrne, C. J., Heuer, M. L., Larsson, E., Antipin, Y., Reva, B., Goldberg, A. P., Sander, C., & Schultz, N. (2012). The cBio Cancer Genomics Portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2(5), 401–404. https://doi.org/10.1158/2159-8290.CD-12-0095
  • Chang, L., Zhou, G., Soufan, O., & Xia, J. (2020). miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Research, 48(W1), W244–W251. https://doi.org/10.1093/nar/gkaa467
  • Chen, N., Fang, W., Lin, Z., Peng, P., Wang, J., Zhan, J., Hong, S., Huang, J., Liu, L., Sheng, J., Zhou, T., Chen, Y., Zhang, H., & Zhang, L. (2017). KRAS mutation-induced upregulation of PD-L1 mediates immune escape in human lung adenocarcinoma. Cancer Immunology, Immunotherapy: CII, 66(9), 1175–1187. https://doi.org/10.1007/s00262-017-2005-z
  • Chen, J., Jiang, C. C., Jin, L., & Zhang, X. D. (2016). Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Annals of oncology, 27(3), 409–416. https://doi.org/10.1093/annonc/mdv615
  • Chen, S., Tu, Y., Yuan, H., Shi, Z., Guo, Y., Gong, W., & Tu, S. (2022). Regulatory functions of miR-200b-3p in tumor development (review). Oncology Reports, 47(5), 1–9. https://doi.org/10.3892/or.2022.8307
  • Chin, C. H., Chen, S. H., Wu, H. H., Ho, C. W., Ko, M. T., & Lin, C. Y. (2014). cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 8(Suppl 4), S11. https://doi.org/10.1186/1752-0509-8-S4-S11
  • Cho, W. C., Wong, C. F., Li, K. P., Fong, A. H., Fung, K. Y., & Au, J. S. (2023). miR-145 as a potential biomarker and therapeutic target in patients with non-small cell lung cancer. International Journal of Molecular Sciences, 24(12), 10022. https://doi.org/10.3390/ijms241210022
  • Cojocneanu, R., Braicu, C., Raduly, L., Jurj, A., Zanoaga, O., Magdo, L., Irimie, A., Muresan, M. S., Ionescu, C., Grigorescu, M., & Berindan-Neagoe, I. (2020). Plasma and tissue specific miRNA expression pattern and functional analysis associated to colorectal cancer patients. Cancers, 12(4), 843. https://doi.org/10.3390/cancers12040843
  • Croce, C. M. (2010). 27 Causes and consequences of microRNA dysregulation in cancer. European Journal of Cancer Supplements, 8(5), 8. https://doi.org/10.1016/s1359-6349(10)70836-3
  • Esposito, M. R., Aveic, S., Seydel, A., & Tonini, G. P. (2017). Neuroblastoma treatment in the post-genomic era. Journal of Biomedical Science, 24(1), 14. https://doi.org/10.1186/s12929-017-0319-y
  • Gao, J., Mazor, T., Ciftci, E., Raman, P., Lukasse, P., Bahceci, I., Sigaras, A., Abeshouse, A., Bruijn, I. D., Gross, B., Kundra, R., Lisman, A., Ochoa, A., Sheridan, R., Su, J., Sumer, S. O., Sun, Y., Wang, A., Wang, J., … Cerami, E. (2018). Abstract 923: The cBioPortal for cancer genomics: An intuitive open-source platform for exploration, analysis and visualization of cancer genomics data. Cancer Research, 78(13_Supplement), 923–923. https://doi.org/10.1158/1538-7445.AM2018-923
  • Guo, L., Zhang, T., Xiong, Y., & Yang, Y. (2015). Roles of NOTCH1 as a therapeutic target and a biomarker for lung cancer: Controversies and perspectives. Disease Markers, 2015, 520590–520598. https://doi.org/10.1155/2015/520590
  • Jo, H., Shim, K., & Jeoung, D. (2022). Potential of the miR-200 family as a target for developing anti-cancer therapeutics. International Journal of Molecular Sciences, 23(11), 5881. https://doi.org/10.3390/ijms23115881
  • Kohl, M., Wiese, S., & Warscheid, B. (2011). Cytoscape: Software for visualization and analysis of biological networks. Methods in Molecular Biology, 696, 291–303. https://doi.org/10.1007/978-1-60761-987-1_18
  • Konishi, J., Kawaguchi, K. S., Vo, H., Haruki, N., Gonzalez, A., Carbone, D. P., & Dang, T. P. (2007). γ-Secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Research, 67(17), 8051–8057. https://doi.org/10.1158/0008-5472.CAN-07-1022
  • Li, C., Tang, Z., Zhang, W., Ye, Z., & Liu, F. (2021). GEPIA2021: Integrating multiple deconvolution-based analysis into GEPIA. Nucleic Acids Research, 49(W1), W242–W246. https://doi.org/10.1093/nar/gkab418
  • Li, T., Fan, J., Wang, B., Traugh, N., Chen, Q., Liu, J. S., Li, B., & Liu, X. S. (2017). TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Research, 77(21), e108–e110. https://doi.org/10.1158/0008-5472.CAN-17-0307
  • Li, X., Jiang, Z., Li, X., & Zhang, X. (2018). SIRT1 overexpression protects non-small cell lung cancer cells against osteopontin-induced epithelial-mesenchymal transition by suppressing NF-κB signalling. OncoTargets and Therapy, 11, 1157–1171. https://doi.org/10.2147/OTT.S137146
  • Li, X., Sun, X., Kan, C., Chen, B., Qu, N., Hou, N., Liu, Y., & Han, F. (2022). COL1A1: A novel oncogenic gene and therapeutic target in malignancies. Pathology, Research and Practice, 236, 154013. https://doi.org/10.1016/j.prp.2022.154013
  • Licciulli, S., Avila, J. L., Hanlon, L., Troutman, S., Cesaroni, M., Kota, S., Keith, B., Simon, M. C., Puré, E., Radtke, F., Capobianco, A. J., & Kissil, J. L. (2013). Notch1 is required for Kras-induced lung adenocarcinoma and controls tumor cell survival via p53. Cancer Research, 73(19), 5974–5984. https://doi.org/10.1158/0008-5472.CAN-13-1384
  • Luo, Y., & Chen, C. (2021). The roles and regulation of the KLF5 transcription factor in cancers. Cancer Science, 112(6), 2097–2117. https://doi.org/10.1111/cas.14910
  • Mo, Y.-Y., Tang, H., & Miele, L. (2013). Notch-associated microRNAs in cancer. Current Drug Targets, 14(10), 1157–1166. https://doi.org/10.2174/13894501113149990188
  • Myers, D. J., & Wallen, J. M. (2023). Lung adenocarcinoma. StatPearls. http://www.ncbi.nlm.nih.gov/pubmed/30147334
  • Nguyen, D., Rubinstein, L., Takebe, N., Miele, L., Tomaszewski, J. E., Ivy, P., Doroshow, J. H., & Yang, S. X. (2015). Notch1 phenotype and clinical stage progression in non-small cell lung cancer. Journal of Hematology & Oncology, 8(1), 9. https://doi.org/10.1186/s13045-014-0104-2
  • Pathan, M., Keerthikumar, S., Ang, C.-S., Gangoda, L., Quek, C. Y. J., Williamson, N. A., Mouradov, D., Sieber, O. M., Simpson, R. J., Salim, A., Bacic, A., Hill, A. F., Stroud, D. A., Ryan, M. T., Agbinya, J. I., Mariadason, J. M., Burgess, A. W., & Mathivanan, S. (2015). FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics, 15(15), 2597–2601. https://doi.org/10.1002/pmic.201400515
  • Potter, E. (2008). 基因的改变NIH public access. Bone, 23(1), 1–7. https://doi.org/10.1016/j.canlet.2009.11.012.Crosstalk
  • Rolle, K., Rivero-Müller, A., & Nees, M. (2021). Cells 10.1. Progression and metastasis.
  • Ruan, L., Chen, J., Ruan, L., Tan, A., & Wang, P. (2018). miR-34a inhibits tumorigenesis of NSCLC via targeting SIRT6. International Journal of Clinical and Experimental Pathology, 11(3), 1135–1145. http://www.ncbi.nlm.nih.gov/pubmed/31938208%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6958161
  • Shao, S., Zhao, X., Zhang, X., Luo, M., Zuo, X., Huang, S., Wang, Y., Gu, S., & Zhao, X. (2015). Notch1 signaling regulates the epithelial-mesenchymal transition and invasion of breast cancer in a slug-dependent manner. Molecular Cancer, 14(1), 28. https://doi.org/10.1186/s12943-015-0295-3
  • Sirover, M. A. (2018). Pleiotropic effects of moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in cancer progression, invasiveness, and metastases. Cancer Metastasis Reviews, 37(4), 665–676. https://doi.org/10.1007/s10555-018-9764-7
  • Sriroopreddy, R., Sajeed, R., P, R., & C, S. (2019). Differentially expressed gene (DEG) based protein-protein interaction (PPI) network identifies a spectrum of gene interactome, transcriptome and correlated miRNA in nondisjunction Down syndrome. International Journal of Biological Macromolecules, 122, 1080–1089. https://doi.org/10.1016/j.ijbiomac.2018.09.056
  • Sriroopreddy, R., & Sudandiradoss, C. (2018). Integrative network-based approach identifies central genetic and transcriptomic elements in triple-negative breast cancer. Functional & Integrative Genomics, 18(2), 113–124. https://doi.org/10.1007/s10142-017-0579-3
  • Takeichi, M. (1991). Cadherin cell adhesion receptors as a morphogenetic regulator. Science, 251(5000), 1451–1455. https://doi.org/10.1126/science.2006419
  • Tang, Z., Li, C., Kang, B., Gao, G., Li, C., & Zhang, Z. (2017). GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Research, 45(W1), W98–W102. https://doi.org/10.1093/nar/gkx247
  • Tyczyński, J. E., & Parkin, D. M. (2010). Global epidemiology of lung cancer. Textbook of Prevention and Detection of Early Lung Cancer, 85(1), 1–18. https://doi.org/10.4324/9780203324523_chapter_1
  • Westhoff, B., Colaluca, I. N., D’Ario, G., Donzelli, M., Tosoni, D., Volorio, S., Pelosi, G., Spaggiari, L., Mazzarol, G., Viale, G., Pece, S., & Di Fiore, P. P. (2009). Alterations of the Notch pathway in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 106(52), 22293–22298. https://doi.org/10.1073/pnas.0907781106
  • Xiao, H. (2019). MiR-7-5p suppresses tumor metastasis of non-small cell lung cancer by targeting NOVA2. Cellular & Molecular Biology Letters, 24(1), 60. https://doi.org/10.1186/s11658-019-0188-3
  • Ye, T., Li, J., Sun, Z., Liu, D., Zeng, B., Zhao, Q., Wang, J., & Rosie Xing, H. (2020). Cdh1 functions as an oncogene by inducing self-renewal of lung cancer stem-like cells via oncogenic pathways. International Journal of Biological Sciences, 16(3), 447–459. https://doi.org/10.7150/ijbs.38672
  • Yu, L., Liang, X., Wang, J., Ding, G., Tang, J., Xue, J., He, X., Ge, J., Jin, X., Yang, Z., Li, X., Yao, H., Yin, H., Liu, W., Yin, S., Sun, B., & Sheng, J. (2023). Identification of key biomarkers and candidate molecules in non-small-cell lung cancer by integrated bioinformatics analysis. Genetics Research, 2023, 6782732–6782719. https://doi.org/10.1155/2023/6782732
  • Yu, X., Ji, X., & Su, C. (2022). HER2-altered non-small cell lung cancer: Biology, clinicopathologic features, and emerging therapies. Frontiers in Oncology, 12(March), 860313. https://doi.org/10.3389/fonc.2022.860313
  • Yuan, X., Wu, H., Han, N., Xu, H., Chu, Q., Yu, S., Chen, Y., & Wu, K. (2014). Notch signaling and EMT in non-small cell lung cancer: Biological significance and therapeutic application. Journal of Hematology & Oncology, 7(1), 87. https://doi.org/10.1186/s13045-014-0087-z
  • Zhang, L., Liao, Y., & Tang, L. (2019). MicroRNA-34 family: A potential tumor suppressor and therapeutic candidate in cancer. Journal of Experimental & Clinical Cancer Research: CR, 38(1), 53. https://doi.org/10.1186/s13046-019-1059-5
  • Zhao, G., Liu, L., Zhao, T., Jin, S., Jiang, S., Cao, S., Han, J., Xin, Y., Dong, Q., Liu, X., & Cui, J. (2015). Upregulation of miR-24 promotes cell proliferation by targeting NAIF1 in non-small cell lung cancer. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 36(5), 3693–3701. https://doi.org/10.1007/s13277-014-3008-4
  • Zhou, H., Chang, J., Zhang, J., Zheng, H., Miao, X., Mo, H., Sun, J., Jia, Q., & Qi, G. (2023). PRMT5 activates KLF5 by methylation to facilitate lung cancer. Journal of Cellular and Molecular Medicine, May, 1–15. https://doi.org/10.1111/jcmm.17856

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.