211
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Identification of selective plant-derived natural carotenoid and flavonoids as the potential inhibitors of DHHC-mediated protein S-palmitoylation: an in silico study

, , &
Received 20 Aug 2023, Accepted 10 Jan 2024, Published online: 06 Feb 2024

References

  • Aboelnga, M. M. (2022). Exploring the structure function relationship of heme peroxidases: Molecular dynamics study on cytochrome c peroxidase variants. Computers in Biology and Medicine, 146, 105544. https://doi.org/10.1016/j.compbiomed.2022.105544
  • Anjum, F., Sulaimani, M. N., Shafie, A., Mohammad, T., Ashraf, G. M., Bilgrami, A. L., Alhumaydhi, F. A., Alsagaby, S. A., Yadav, D. K., & Hassan, M. I. (2022). Bioactive phytoconstituents as potent inhibitors of casein Kinase-2: Dual implications in cancer and COVID-19 therapeutics. RSC Advances, 12(13), 7872–7882. https://doi.org/10.1039/d1ra09339h
  • Arefin, A., Ismail Ema, T., Islam, T., Hossen, S., Islam, T., Al Azad, S., Uddin Badal, N., Islam, A., Biswas, P., Alam, N. U., Islam, E., Anjum, M., Masud, A., Kamran, S., Rahman, A., & Kumar Paul, P. (2021). Target specificity of selective bioactive compounds in blocking α-dystroglycan receptor to suppress Lassa virus infection: An in silico approach. Journal of Biomedical Research, 35(6), 459–473. https://doi.org/10.7555/JBR.35.20210111
  • Azizi, S. A., Delalande, C., Lan, T., Qiu, T., & Dickinson, B. C. (2022). Charting the chemical space of acrylamide-based inhibitors of zDHHC20. ACS Medicinal Chemistry Letters, 13(10), 1648–1654. https://doi.org/10.1021/acsmedchemlett.2c00336
  • Bronikowska, J., Szliszka, E., Kostrzewa-Susłow, E., Jaworska, D., Czuba, Z. P., Bednarski, P., & Król, W. (2017). Novel structurally related flavones augment cell death induced by rhsTRAIL. International Journal of Molecular Sciences, 18(6), 1211. https://doi.org/10.3390/ijms1806121
  • Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G. V., Christie, C. H., Dalenberg, K., Di Costanzo, L., Duarte, J. M., Dutta, S., Feng, Z., Ganesan, S., Goodsell, D. S., Ghosh, S., Green, R. K., Guranović, V., Guzenko, D., Hudson, B. P., … Zhuravleva, M. (2021). RCSB protein data bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering, and energy sciences. Nucleic Acids Research, 49(D1), D437–D451. https://doi.org/10.1093/nar/gkaa1038
  • Buszka, A., Pytyś, A., Colvin, D., Włodarczyk, J., & Wójtowicz, T. (2023). S-palmitoylation of synaptic proteins in neuronal plasticity in normal and pathological brains. Cells, 12(3), 387. https://doi.org/10.3390/cells12030387
  • Chang, Y. C., Chen, C. P., & Chen, C. C. (2012). Predicting skin permeability of chemical substances using a quantitative structure-activity relationship. Procedia Engineering. 45, 875–879. https://doi.org/10.1016/j.proeng.2012.08.252
  • Chaturvedi, S., Biswas, M., Sadhukhan, S., & Sonawane, A. (2023). Role of EGFR and FASN in breast cancer progression. Journal of Cell Communication and Signaling, 17(4), 1249–1282. https://doi.org/10.1007/s12079-023-00771-w
  • Chen, B., Sun, Y., Niu, J., Jarugumilli, G. K., & Wu, X. (2018). Protein lipidation in cell signaling and diseases: Function, regulation, and therapeutic opportunities. Cell Chemical Biology, 25(7), 817–831. https://doi.org/10.1016/j.chembiol.2018.05.003
  • Chen, W., Cui, D., Jerome, S. V., Michino, M., Lenselink, E. B., Huggins, D. J., Beautrait, A., Vendome, J., Abel, R., Friesner, R. A., & Wang, L. (2023). Enhancing hit discovery in virtual screening through absolute protein–ligand binding free-energy calculations. Journal of Chemical Information and Modeling, 63(10), 3171–3185. https://doi.org/10.1021/acs.jcim.3c00013
  • Chopra, B., & Dhingra, A. K. (2021). Natural products: A lead for drug discovery and development. Phytotherapy Research: PTR, 35(9), 4660–4702. https://doi.org/10.1002/ptr.7099
  • Daina, A., Michielin, O., & Zoete, V. (2019). Swiss target prediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364. https://doi.org/10.1093/nar/gkz382
  • Davda, D., El Azzouny, M. A., Tom, C. T. M. B., Hernandez, J. L., Majmudar, J. D., Kennedy, R. T., & Martin, B. R. (2013). Profiling targets of the irreversible palmitoylation inhibitor 2-bromopalmitate. ACS Chemical Biology, 8(9), 1912–1917. https://doi.org/10.1021/cb400380s
  • De, I., & Sadhukhan, S. (2018). Emerging roles of DHHC-mediated protein S-palmitoylation physiological and pathophysiological context. European Journal of Cell Biology, 97(5), 319–338. https://doi.org/10.1016/j.ejcb.2018.03.005
  • Degoey, D. A., Chen, H. J., Cox, P. B., & Wendt, M. D. (2018). Beyond the rule of 5: Lessons learned from Abbvie’s drugs and compound collection. Journal of Medicinal Chemistry, 61(7), 2636–2651. https://doi.org/10.1021/acs.jmedchem.7b00717
  • Dennis, K. M. J. H., & Heather, L. C. (2023). Post-translational palmitoylation of metabolic proteins. Frontiers in Physiology, 14, 1122895. https://doi.org/10.3389/fphys.2023.1122895
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). Autodock Vina 1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  • Ferdausi, N., Islam, S., Rimti, F. H., Quayum, S. T., Arshad, E. M., Ibnat, A., Islam, T., Arefin, A., Ema, T. I., Biswas, P., Dey, D., & Azad, S. A. (2022). Point-specific interactions of isovitexin with the neighboring amino acid residues of the hACE2 receptor as a targeted therapeutic agent in suppressing the SARS-CoV-2 influx mechanism. Journal of Advanced Veterinary and Animal Research, 9(2), 230–240. https://doi.org/10.5455/javar.2022.i588
  • Fhu, C. W., & Ali, A. (2021). Protein lipidation by palmitoylation and myristoylation in cancer. Frontiers in Cell and Developmental Biology, 9, 673647. https://doi.org/10.3389/fcell.2021.673647
  • Forouzesh, N., & Mishra, N. (2021). An effective MM/GBSA protocol for absolute binding free energy calculations: A case study on SARS-CoV-2 spike protein and the human ACE2 receptor. Molecules (Basel, Switzerland), 26(8), 2383. https://doi.org/10.3390/molecules26082383
  • Guan, L., Yang, H., Cai, Y., Sun, L., Di, P., Li, W., Liu, G., & Tang, Y. (2018). ADMET-score—A comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm, 10(1), 148–157. https://doi.org/10.1039/c8md00472b
  • Guengerich, F. P., Wilkey, C. J., & Phan, T. T. N. (2019). Human cytochrome P450 enzymes bind drugs and other substrates mainly through conformational-selection modes. The Journal of Biological Chemistry, 294(28), 10928–10941. https://doi.org/10.1074/jbc.ra119.009305
  • Hernandez, L. M., Montersino, A., Niu, J., Guo, S., Faezov, B., Sanders, S. S., Dunbrack, R. L., & Thomas, G. M. (2023). Palmitoylation-dependent control of JAK1 kinase signaling governs responses to neuropoietic cytokines and survival in DRG neurons. The Journal of Biological Chemistry, 299(8), 104965. https://doi.org/10.1016/j.jbc.2023.104965
  • Ion, B., Aboelnga, M., & Gauld, J. (2016). Insights from molecular dynamics on substrate binding and effects of active site mutations in Δ1-pyrroline-5-carboxylate dehydrogenase. Canadian Journal of Chemistry, 94(12), 1151–1162. https://doi.org/10.1139/cjc-2016-0286
  • Ivanova, L., Tammiku-Taul, J., García-Sosa, A. T., Sidorova, Y., Saarma, M., & Karelson, M. (2018). Molecular dynamics simulations of the interactions between glial cell line-derived neurotrophic factor family receptor GFRα1 and small-molecule ligands. ACS Omega, 3(9), 11407–11414. https://doi.org/10.1021/acsomega.8b01524
  • Jabin, A., Uddin, M. F., Al Azad, S., Rahman, A., Tabassum, F., Sarker, P., Morshed, A. K. M. H., Rahman, S., Raisa, F. F., Sakib, M. R., Olive, A. H., Islam, T., Tahsin, R., Ahmed, S. Z., Biswas, P., Habiba, M. U., Siddiquy, M., & Jafary, M. (2023). Target-specificity of different amyrin subunits in impeding HCV influx mechanism inside the human cells considering the quantum tunnel profiles and molecular strings of the CD81 receptor: A combined in silico and in vivo study. In Silico Pharmacology, 11(1), 8. https://doi.org/10.1007/s40203-023-00144-6
  • Karami, T. K., Hailu, S., Feng, S., Graham, R., & Gukasyan, H. J. (2022). Eyes on Lipinski rule of five: A new “Rule of thumb” for physicochemical design space of ophthalmic drugs. Journal of Ocular Pharmacology and Therapeutics: The Official Journal of the Association for Ocular Pharmacology and Therapeutics, 38(1), 43–55. https://doi.org/10.1089/jop.2021.0069
  • Kharbanda, A., Walter, D. M., Gudiel, A. A., Schek, N., Feldser, D. M., & Witze, E. S. (2020). Blocking EGFR palmitoylation suppresses PI3K signaling and mutant KRAS lung tumorigenesis. Science Signaling, 13(621), eaax2364. https://doi.org/10.1126/scisignal.aax2364
  • Lai, J. I., Tseng, Y. J., Chen, M. H., Huang, C. F., & Chang, P. M. (2020). Clinical perspective of FDA-approved drugs with P-glycoprotein inhibition activities for potential cancer therapeutics. Frontiers in Oncology, 10, 561936. https://doi.org/10.3389/fonc.2020.561936
  • Lan, T., Delalande, C., & Dickinson, B. C. (2021). Inhibitors of DHHC family proteins. Current Opinion in Chemical Biology, 65, 118–125. https://doi.org/10.1016/j.cbpa.2021.07.002
  • Lanyon-Hogg, T., Faronato, M., Serwa, R. A., & Tate, E. W. (2017). Dynamic protein acylation: New substrates, mechanisms, and drug targets. Trends in Biochemical Sciences, 42(7), 566–581. https://doi.org/10.1016/j.tibs.2017.04.004
  • Li, W., Pang, Y., Wang, Y., Mei, F., Guo, M., Wei, Y., Li, X., Qin, W., Wang, W., Jia, L., & Jia, J. (2023). Aberrant palmitoylation caused by a zDHHC21 mutation contributes to pathophysiology of Alzheimer’s Disease. BMC Medicine, 21(1), 223. https://doi.org/10.1186/s12916-023-02930-7
  • Li, Z., Jiang, D., Liu, F., & Li, Y. (2023). Involvement of zDHHC9 in lung adenocarcinoma: Regulation of PD-L1 stability via palmitoylation. In Vitro Cellular & Developmental Biology. Animal, 59(3), 193–203. https://doi.org/10.1007/s11626-023-00755-5
  • Liu, Z., Xiao, M., Mo, Y., Wang, H., Han, Y., Zhao, X., Yang, X., Liu, Z., & Xu, B. (2022). Emerging roles of protein palmitoylation and its modifying enzymes in cancer cell signal transduction and cancer therapy. International Journal of Biological Sciences, 18(8), 3447–3457. https://doi.org/10.7150/ijbs.72244
  • Main, A., & Fuller, W. (2022). Protein S‐palmitoylation: Advances and challenges in studying a therapeutically important lipid modification. The FEBS Journal, 289(4), 861–882. https://doi.org/10.1111/febs.15781
  • Monzon, A. M., Zea, D. J., Fornasari, M. S., Saldaño, T. E., Fernandez-Alberti, S., Tosatto, S. C. E., & Parisi, G. (2017). Conformational diversity analysis reveals three functional mechanisms in proteins. PLoS Computational Biology, 13(2), e1005398. https://doi.org/10.1371/journal.pcbi.1005398
  • Morshed, A K M Helal, Al Azad, Salauddin, Mia, Md Abdur Rashid, Uddin, Mohammad Fahim, Ema, Tanzila Ismail, Yeasin, Rukaiya Binte, Srishti, Sanjida Ahmed, Sarker, Pallab, Aurthi, Rubaita Younus, Jamil, Farhan, Samia, Nure Sharaf Nower, Biswas, Partha, Sharmeen, Iffat Ara, Ahmed, Rasel, Siddiquy, Mahbuba, Nurunnahar,. Oncoinformatic screening of the gene clusters involved in the HER2-positive breast cancer formation along with the in silico pharmacodynamic profiling of selective long-chain omega-3 fatty acids as the metastatic antagonists. Molecular Diversity, 6, 2023. 27: 2651–2672. https://doi.org/10.1007/s11030-022-10573-8
  • Nipun, T. S., Ema, T. I., Mia, M. A. R., Hossen, M. S., Arshe, F. A., Ahmed, S. Z., Masud, A., Taheya, F. F., Khan, A. A., Haque, F., Azad, S. A., Al Hasibuzzaman, M., Tanbir, M., Anis, S., Akter, S., Mily, S. J., & Dey, D. (2021). Active site-specific quantum tunneling of hACE2 receptor to assess its complexing poses with selective bioactive compounds in co-suppressing SARS-CoV-2 influx and subsequent cardiac injury. Journal of Advanced Veterinary and Animal Research, 8(4), 540–556. https://doi.org/10.5455/javar.2021.h544
  • O Donovan, D. H., De Fusco, C., Kuhnke, L., & Reichel, A. (2023). Trends in molecular properties, bioavailability, and permeability across the bayer compound collection. Journal of Medicinal Chemistry, 66(4), 2347–2360. https://doi.org/10.1021/acs.jmedchem.2c01577
  • Pandya, N., & Kumar, A. (2023). An immunoinformatics analysis: Design of a multi-epitope vaccine against Cryptosporidium Hominis by employing heat shock protein triggers the innate and adaptive immune responses. Journal of Biomolecular Structure & Dynamics, 41(23), 13563–13579. https://doi.org/10.1080/07391102.2023.2175373
  • Pandya, N., & Kumar, A. (2023). Immunoinformatics analysis for the design of multi-epitope subunit vaccine by using heat shock proteins against Schistosom mansoni. Journal of Biomolecular Structure & Dynamics, 41(5), 1859–1878. https://doi.org/10.1080/07391102.2021.2025430
  • Panina, I., Krylov, N., Gadalla, M. R., Aliper, E., Kordyukova, L., Veit, M., Chugunov, A., & Efremov, R. (2022). Molecular dynamics of DHHC20 acyltransferase suggests principles of lipid and protein substrate selectivity. International Journal of Molecular Sciences, 23(9), 5091. https://doi.org/10.3390/ijms23095091
  • Paul, P. K., Al Azad, S., Rahman, M. H., Farjana, M., Uddin, M. R., Dey, D., Mahmud, S., Ema, T. I., Biswas, P., Anjum, M., Akhi, O. J., & Ahmed, S. Z. (2022). Catabolic profiling of selective enzymes in the saccharification of non-food lignocellulose parts of biomass into functional edible sugars and bioenergy: An in silico bioprospecting. Journal of Advanced Veterinary and Animal Research, 9(1), 19–32. https://doi.org/10.5455/javar.2022.i565
  • Rahman, Mohammad Habibur, Al Azad, Salauddin, Uddin, Mohammad Fahim, Farzana, Maisha, Sharmeen, Iffat Ara, Kabbo, Kaifi Sultana, Jabin, Anika, Rahman, Ashfaque, Jamil, Farhan, Srishti, Sanjida Ahmed, Riya, Fahmida Haque, Khan, Towhid, Ahmed, Rasel, Rahman, Samiur, Khan, Mohammad Ferdousur Rahman, Rahman, Md. Bahanur, Nurunnahar. (2023). WGS-based screening of the co-chaperone protein Djla-induced curved DNA binding protein A (Cbpa) from a new multidrug-resistant zoonotic mastitis-causing Klebsiella pneumoniae strain: A novel molecular target of selective flavonoids. Molecular Diversity, 2023. https://doi.org/10.1007/s11030-023-10731-6
  • Ramadan, A. A., Mayilsamy, K., McGill, A. R., Ghosh, A., Giulianotti, M. A., Donow, H. M., Mohapatra, S. S., Mohapatra, S., Chandran, B., Deschenes, R. J., & Roy, A. (2022). Identification of SARS-CoV-2 spike palmitoylation inhibitors that results in release of attenuated virus with reduced infectivity. Viruses, 14(3), 531. https://doi.org/10.3390/v14030531
  • Rana, M. S., Kumar, P., Lee, C. J., Verardi, R., Rajashankar, K. R., & Banerjee, A. F. (2018). Fatty acyl recognition and transfer by an integral membrane S-acyltransferase. Science (New York, N.Y.), 359(6372), eaao6326. https://doi.org/10.1126/science.aao6326
  • Sánchez-Martínez, J. D., Valdés, A., Gallego, R., Suárez-Montenegro, Z. J., Alarcón, M., Ibañez, E., Alvarez-Rivera, G., & Cifuentes, A. (2022). Blood–brain barrier permeability study of potential neuroprotective compounds recovered from plants and agri-food by-products. Frontiers in Nutrition, 9, 924596. https://doi.org/10.3389/fnut.2022.924596
  • Stix, R., Lee, C. J., Faraldo-Gómez, J. D., & Banerjee, A. (2020). Structure and mechanism of DHHC protein acyltransferases. Journal of Molecular Biology, 432(18), 4983–4998. https://doi.org/10.1016/j.jmb.2020.05.023
  • Subbaraj, G. K., Kumar, Y. S., & Kulanthaivel, L. (2021). Antiangiogenic role of natural flavonoids and their molecular mechanism: An update. The Egyptian Journal of Internal Medicine, 33(1), 1–10. https://doi.org/10.1186/s43162-021-00056-x
  • Wang, Z., Ying, J., Zhang, X., Miao, C., Xiao, Y., Zou, J., & Chen, B. (2023). Small‐molecule modulation of protein lipidation: From chemical probes to therapeutics. Chembiochem: A European Journal of Chemical Biology, 24(14), e202300071. https://doi.org/10.1002/cbic.202300071
  • Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMET lab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255
  • Zeiger, E. (2019). The test that changed the world: The Ames test and the regulation of chemicals. Mutation Research. Genetic Toxicology and Environmental Mutagenesis, 841, 43–48. https://doi.org/10.1016/j.mrgentox.2019.05.007
  • Zhang, H., Li, X., Ma, C., Wang, K., Zhou, J., Chen, J., Wang, Y., & Shi, Y. (2020). Fine-mapping of zDHHC2 identifies risk variants for schizophrenia in the Han Chinese population. Molecular Genetics & Genomic Medicine, 8(7), e1190. https://doi.org/10.1002/mgg3.1190
  • Zhang, Y., Li, F., Fu, K., Liu, X., Lien, I. C., & Li, H. (2021). Potential role of S-palmitoylation in cancer stem cells of lung adenocarcinoma. Frontiers in Cell and Developmental Biology, 9, 734897. https://doi.org/10.3389/fcell.2021.734897

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.