108
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mutational analysis of consanguineous families and their targeted therapy against dwarfism

, , , , , , , , & show all
Received 18 Apr 2023, Accepted 09 Jan 2024, Published online: 07 Feb 2024

References

  • Abdel-Salam, G. M. H., Sayed, I. S. M., Afifi, H. H., Abdel-Ghafar, S. F., Abouzaid, M. R., Ismail, S. I., Aglan, M. S., Issa, M. Y., El-Bassyouni, H. T., El-Kamah, G., Effat, L. K., Eid, M., Zaki, M. S., Temtamy, S. A., & Abdel-Hamid, M. S. (2020). Microcephalic osteodysplastic primordial dwarfism type II: Additional nine patients with implications on phenotype and genotype correlation. American Journal of Medical Genetics. Part A, 182(6), 1407–1420. https://doi.org/10.1002/ajmg.a.61585
  • Ain, N. U . (2021). Identification of genes involved in specific dwarfism disorders [Thesis published]. (pp. 1–248). http://prr.hec.gov.pk/jspui/handle/123456789/16216
  • Ain, N. U., Fatima, Z., Naz, S., & Makitie, O. (2021). RAB33B and PCNT variants in two Pakistani families with skeletal dysplasia and short stature. BMC Musculoskeletal Disorders, 22(1), 630. https://doi.org/10.1186/s12891-021-04503-2
  • Ajmal, M., Mir, A., Shoaib, M., Malik, S. A., & Nasir, M. (2017). Identification and in silico characterization of p.G380R substitution in FGFR3, associated with achondroplasia in a non-consanguineous Pakistani family. Diagnostic Pathology, 12(1), 47. https://doi.org/10.1186/s13000-017-0642-3
  • Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., de Castro, E., Duvaud, S., Flegel, V., Fortier, A., Gasteiger, E., Grosdidier, A., Hernandez, C., Ioannidis, V., Kuznetsov, D., Liechti, R., Moretti, S., Mostaguir, K., Redaschi, N., Rossier, G., Xenarios, I., & Stockinger, H. (2012). ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 40(Web Server issue), W597–W603. https://doi.org/10.1093/nar/gks400
  • Atlas, A., Jamila, N., Khan, S. N., Rehman, H. R., Khattak, J. Z. K., Malik, M. A., Matiullah., & Shah, A. (2019). Screening of GHRHR and NPR2 genes as a genetic contributors of dwarfism in familial dwarfism of Khyber Pakhtunkhwa, Pakistan. International Journal of Biosciences, 14(1), 263–270. https://doi.org/10.12692/ijb/14.1.263-270
  • Basit, S., Naqvi, S. K., Wasif, N., Ali, G., Ansar, M., & Ahmad, W. (2008). A novel insertion mutation in the cartilage-derived morphogenetic protein-1 (CDMP1) gene underlies Grebe-type chondrodysplasia in a consanguineous Pakistani family. BMC Medical Genetics, 9(1), 102. https://doi.org/10.1186/1471-2350-9-102
  • Bober, M. B., & Jackson, A. P. (2017). Microcephalic osteodysplastic primordial dwarfism, type II: A clinical review. Current Osteoporosis Reports, 15(2), 61–69. https://doi.org/10.1007/s11914-017-0348-1
  • Burley, S. K., Berman, H. M., Kleywegt, G. J., Markley, J. L., Nakamura, H., & Velankar, S. (2017). Protein Data Bank (PDB): The single global macromolecular structure archive. Methods in Molecular Biology (Clifton, N.J.), 1607, 627–641. https://doi.org/10.1007/978-1-4939-7000-1_26
  • Carter, E. M., Davis, J. G., & Raggio, C. L. (2007). Advances in understanding etiology of achondroplasia and review of management. Current Opinion in Pediatrics, 19(1), 32–37. https://doi.org/10.1097/MOP.0b013e328013e3d9
  • Cohen, P., Rogol, A. D., Deal, C. L., Saenger, P., Reiter, E. O., Ross, J. L., Chernausek, S. D., Savage, M. O., & Wit, J. M. (2008). Consensus statement on the diagnosis and treatment of children with idiopathic short stature: A summary of the Growth Hormone Research Society, the Lawson Wilkins Pediatric Endocrine Society, and the European Society for Paediatric Endocrinology Workshop. The Journal of Clinical Endocrinology and Metabolism, 93(11), 4210–4217. https://doi.org/10.1210/jc.2008-0509
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Dehghan Tezerjani, M., Vahidi Mehrjardi, M. Y., Hozhabri, H., & Rahmanian, M. (2020). A Novel PCNT frame shift variant (c.7511delA) causing osteodysplastic primordial dwarfism of Majewski Type 2 (MOPD II). Frontiers in Pediatrics, 8, 340. https://doi.org/10.3389/fped.2020.00340
  • Eicher, E. M., & Beamer, W. G. (1976). Inherited ateliotic dwarfism in mice. Characteristics of the mutation, little, on chromosome 6. The Journal of Heredity, 67(2), 87–91. https://doi.org/10.1093/oxfordjournals.jhered.a108682
  • Gkourogianni, A., Andrew, M., Tyzinski, L., Crocker, M., Douglas, J., Dunbar, N., Fairchild, J., Funari, M. F. A., Heath, K. E., Jorge, A. A. L., Kurtzman, T., LaFranchi, S., Lalani, S., Lebl, J., Lin, Y., Los, E., Newbern, D., Nowak, C., Olson, M., … Dauber, A. (2017). Clinical characterization of patients with autosomal dominant short stature due to aggrecan mutations. The Journal of Clinical Endocrinology and Metabolism, 102(2), 460–469. https://doi.org/10.1210/jc.2016-3313
  • Godfrey, P., Rahal, J. O., Beamer, W. G., Copeland, N. G., Jenkins, N. A., & Mayo, K. E. (1993). GHRH receptor of little mice contains a missense mutation in the extracellular domain that disrupts receptor function. Nature Genetics, 4(3), 227–232. https://doi.org/10.1038/ng0793-227
  • Gomes, M. E. S., Kanazawa, T. Y., Riba, F. R., Pereira, N. G., Zuma, M. C. C., Rabelo, N. C., Sanseverino, M. T., Horovitz, D. D. G., Llerena, J. C., Jr., Cavalcanti, D. P., & Gonzalez, S. (2018). Novel and recurrent mutations in the FGFR3 gene and double heterozygosity cases in a cohort of brazilian patients with skeletal dysplasia. Molecular Syndromology, 9(2), 92–99. https://doi.org/10.1159/000486697
  • Graber, E., & Rapaport, R. (2012). Growth and growth disorders in children and adolescents. Pediatric Annals, 41(4), e1–e9. https://doi.org/10.3928/00904481-20120307-07
  • Hall, J. G., Flora, C., Scott, C. I., Jr., Pauli, R. M., & Tanaka, K. I. (2004). Majewski osteodysplastic primordial dwarfism type II (MOPD II): natural history and clinical findings. American Journal of Medical Genetics. Part A, 130A(1), 55–72. https://doi.org/10.1002/ajmg.a.30203
  • Hattori, A., Katoh-Fukui, Y., Nakamura, A., Matsubara, K., Kamimaki, T., Tanaka, H., Dateki, S., Adachi, M., Muroya, K., Yoshida, S., Ida, S., Mitani, M., Nagasaki, K., Ogata, T., Suzuki, E., Hata, K., Nakabayashi, K., Matsubara, Y., Narumi, S., Tanaka, T., … Fukami, M. (2017). Next generation sequencing-based mutation screening of 86 patients with idiopathic short stature. Endocrine Journal, 64(10), 947–954. https://doi.org/10.1507/endocrj.EJ17-0150
  • Hauer, N. N., Sticht, H., Boppudi, S., Büttner, C., Kraus, C., Trautmann, U., Zenker, M., Zweier, C., Wiesener, A., Jamra, R. A., Wieczorek, D., Kelkel, J., Jung, A. M., Uebe, S., Ekici, A. B., Rohrer, T., Reis, A., Dörr, H. G., & Thiel, C. T. (2017). Genetic screening confirms heterozygous mutations in ACAN as a major cause of idiopathic short stature. Scientific Reports, 7(1), 12225. https://doi.org/10.1038/s41598-017-12465-6
  • He, L., Horton, W., & Hristova, K. (2010). Physical basis behind achondroplasia, the most common form of human dwarfism. The Journal of Biological Chemistry, 285(39), 30103–30114. https://doi.org/10.1074/jbc.M109.094086
  • Henderson, S., Sillence, D., Loughlin, J., Bennetts, B., & Sykes, B. (2000). Germline and somatic mosaicism in achondroplasia. Journal of Medical Genetics, 37(12), 956–958. https://doi.org/10.1136/jmg.37.12.956
  • Horton, W. A., Hall, J. G., & Hecht, J. T. (2007). Achondroplasia. Lancet (London, England), 370(9582), 162–172. https://doi.org/10.1016/S0140-6736(07)61090-3
  • Howard, A. D., Feighner, S. D., Cully, D. F., Arena, J. P., Liberator, P. A., Rosenblum, C. I., Hamelin, M., Hreniuk, D. L., Palyha, O. C., Anderson, J., Paress, P. S., Diaz, C., Chou, M., Liu, K. K., McKee, K. K., Pong, S. S., Chaung, L. Y., Elbrecht, A., Dashkevicz, M., … Van der Ploeg, L. H. (1996). A receptor in pituitary and hypothalamus that functions in growth hormone release. Science (New York, N.Y.), 273(5277), 974–977. https://doi.org/10.1126/science.273.5277.974
  • Irfanullah, Umair, M., Khan, S., & Ahmad, W. (2015). Homozygous sequence variants in the NPR2 gene underlying Acromesomelic dysplasia Maroteaux type (AMDM) in consanguineous families. Annals of Human Genetics, 79(4), 238–244. https://doi.org/10.1111/ahg.12116
  • Irfanullah, Zeb, A., Shinwari, N., Shah, K., Gilani, S. Z. T., Khan, S., Lee, K. W., Raza, S. I., Hussain, S., Liaqat, K., & Ahmad, W. (2018). Molecular and in silico analyses validates pathogenicity of homozygous mutations in the NPR2 gene underlying variable phenotypes of Acromesomelic dysplasia, type Maroteaux. The International Journal of Biochemistry & Cell Biology, 102, 76–86. https://doi.org/10.1016/j.biocel.2018.07.004
  • Kale, L., Khambete, N., Sodhi, S., & Kumar, R. (2013). Achondroplasia with oligodontia: Report of a rare case. Journal of Oral and Maxillofacial Pathology: JOMFP, 17(3), 451–454. https://doi.org/10.4103/0973-029X.125219
  • Kantaputra, P., Tanpaiboon, P., Porntaveetus, T., Ohazama, A., Sharpe, P., Rauch, A., Hussadaloy, A., & Thiel, C. T. (2011). The smallest teeth in the world are caused by mutations in the PCNT gene. American Journal of Medical Genetics. Part A, 155A(6), 1398–1403. https://doi.org/10.1002/ajmg.a.33984
  • Khan, B., Basit, S., Touseef, M., Tariq, M., Khan, M. N., & Ahmad, W. (2012). A novel chondroectodermal dysplasia mapped to chromosome 2q24.1-q31.1. European Journal of Medical Genetics, 55(8-9), 455–460. https://doi.org/10.1016/j.ejmg.2012.04.004
  • Khan, F., Arshad, A., Ullah, A., Steenackers, E., Mortier, G., Ahmad, W., Arshad, M., Khan, S., Hayat, A., Khan, I., Khan, M. A., & Van Hul, W. (2023). Identification of a novel nonsense variant in the DLL3 gene underlying spondylocostal dysostosis in a consanguineous Pakistani family. Molecular Syndromology, 14(3), 191–200. https://doi.org/10.1159/000527043
  • Khan, S., Ali, R. H., Abbasi, S., Nawaz, M., Muhammad, N., & Ahmad, W. (2012). Novel mutations in natriuretic peptide receptor-2 gene underlie acromesomelic dysplasia, type maroteaux. BMC Medical Genetics, 13(1), 44. https://doi.org/10.1186/1471-2350-13-44
  • Khetarpal, P., Das, S., Panigrahi, I., & Munshi, A. (2016). Primordial dwarfism: Overview of clinical and genetic aspects. Molecular Genetics and Genomics: MGG, 291(1), 1–15. https://doi.org/10.1007/s00438-015-1110-y
  • Kim, Y. M., Cheon, C. K., Lim, H. H., & Yoo, H. W. (2018). Identification of a novel heterozygous mutation of ACAN in a Korean family with proportionate short stature. Journal of Genetic Medicine, 15(2), 102–106. https://doi.org/10.5734/JGM.2018.15.2.102
  • Legeai-Mallet, L., & Savarirayan, R. (2020). Novel therapeutic approaches for the treatment of achondroplasia. Bone, 141, 115579. https://doi.org/10.1016/j.bone.2020.115579
  • Levitsky, L. L., Luria, A. H., Hayes, F. J., & Lin, A. E. (2015). Turner syndrome: Update on biology and management across the life span. Current Opinion in Endocrinology, Diabetes, and Obesity, 22(1), 65–72. https://doi.org/10.1097/MED.0000000000000128
  • Lin, S. C., Lin, C. R., Gukovsky, I., Lusis, A. J., Sawchenko, P. E., & Rosenfeld, M. G. (1993). Molecular basis of the little mouse phenotype and implications for cell type-specific growth. Nature, 364(6434), 208–213. https://doi.org/10.1038/364208a0
  • Maass, P., Schulz-Gasch, T., Stahl, M., & Rarey, M. (2007). Recore: A fast and versatile method for scaffold hopping based on small molecule crystal structure conformations. Journal of Chemical Information and Modeling, 47(2), 390–399. https://doi.org/10.1021/ci060094h
  • Maheshwari, H. G., Silverman, B. L., Dupuis, J., & Baumann, G. (1998). Phenotype and genetic analysis of a syndrome caused by an inactivating mutation in the growth hormone-releasing hormone receptor: Dwarfism of Sindh. The Journal of Clinical Endocrinology and Metabolism, 83(11), 4065–4074. https://doi.org/10.1210/jcem.83.11.5226
  • Moslehi, R., Ambroggio, X., Nagarajan, V., Kumar, A., & Dzutsev, A. (2014). Nucleotide excision repair/transcription gene defects in the fetus and impaired TFIIH-mediated function in transcription in placenta leading to preeclampsia. BMC Genomics. 15(1), 373. https://doi.org/10.1186/1471-2164-15-373
  • Nguyen, T. H., Nguyen, N. L., Vu, C. D., Ngoc, C. T. B., Nguyen, N. K., & Nguyen, H. H. (2021). Identification of three novel mutations in PCNT in Vietnamese patients with microcephalic osteodysplastic primordial dwarfism type II. Genes & Genomics, 43(2), 115–121. https://doi.org/10.1007/s13258-020-01032-5
  • Panda, A., Gamanagatti, S., Jana, M., & Gupta, A. K. (2014). Skeletal dysplasias: A radiographic approach and review of common non-lethal skeletal dysplasias. World Journal of Radiology, 6(10), 808–825. https://doi.org/10.4329/wjr.v6.i10.808
  • Piane, M., Della Monica, M., Piatelli, G., Lulli, P., Lonardo, F., Chessa, L., & Scarano, G. (2009). Majewski osteodysplastic primordial dwarfism type II (MOPD II) syndrome previously diagnosed as Seckel syndrome: Report of a novel mutation of the PCNT gene. American Journal of Medical Genetics. Part A, 149A(11), 2452–2456. https://doi.org/10.1002/ajmg.a.33035
  • Rarey, M., Kramer, B., Lengauer, T., & Klebe, G. (1996). A fast flexible docking method using an incremental construction algorithm. Journal of Molecular Biology, 261(3), 470–489. https://doi.org/10.1006/jmbi.1996.0477
  • Rauch, A., Thiel, C. T., Schindler, D., Wick, U., Crow, Y. J., Ekici, A. B., van Essen, A. J., Goecke, T. O., Al-Gazali, L., Chrzanowska, K. H., Zweier, C., Brunner, H. G., Becker, K., Curry, C. J., Dallapiccola, B., Devriendt, K., Dörfler, A., Kinning, E., Megarbane, A., … Reis, A. (2008). Mutations in the pericentrin (PCNT) gene cause primordial dwarfism. Science (New York, N.Y.), 319(5864), 816–819. https://doi.org/10.1126/science.1151174
  • Savarirayan, R., & Rimoin, D. L. (2002). The skeletal dysplasias. Best Practice & Research. Clinical Endocrinology & Metabolism, 16(3), 547–560. https://doi.org/10.1053/beem.2002.0210
  • Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381–3385. https://doi.org/10.1093/nar/gkg520
  • Sentchordi-Montané, L., Aza-Carmona, M., Benito-Sanz, S., Barreda-Bonis, A. C., Sánchez-Garre, C., Prieto-Matos, P., Ruiz-Ocaña, P., Lechuga-Sancho, A., Carcavilla-Urquí, A., Mulero-Collantes, I., Martos-Moreno, G. A., Del Pozo, A., Vallespín, E., Offiah, A., Parrón-Pajares, M., Dinis, I., Sousa, S. B., Ros-Pérez, P., González-Casado, I., & Heath, K. E. (2018). Heterozygous aggrecan variants are associated with short stature and brachydactyly: Description of 16 probands and a review of the literature. Clinical Endocrinology, 88(6), 820–829. https://doi.org/10.1111/cen.13581
  • Shah, Pashmina Wiqar, Nawaz, Shoaib, Hussain, Shabir, Ullah, Asmat, Basit, Sulman, Ahmad, Wasim, Abdullah, (2020). A homozygous nonsense variant in DYM underlies Dyggve-Melchior-Clausen syndrome associated with ectodermal features.Molecular Biology Reports, 47(9), 7083–7088. https://doi.org/10.1007/s11033-020-05774-z
  • Shaheen, R., Faqeih, E., Ansari, S., Abdel-Salam, G., Al-Hassnan, Z. N., Al-Shidi, T., Alomar, R., Sogaty, S., & Alkuraya, F. S. (2014). Genomic analysis of primordial dwarfism reveals novel disease genes. Genome Research, 24(2), 291–299. https://doi.org/10.1101/gr.160572.113
  • Sharma, S., Sharma, A., & Gupta, U. (2021). Molecular Docking studies on the Anti-fungal activity of Allium sativum (Garlic) against Mucormycosis (black fungus) by BIOVIA discovery studio visualizer 21.1. 0.0. Preprint from Research Square https://doi.org/10.21203/rs.3.rs-888192/v1
  • Shiang, R., Thompson, L. M., Zhu, Y. Z., Church, D. M., Fielder, T. J., Bocian, M., Winokur, S. T., & Wasmuth, J. J. (1994). Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell, 78(2), 335–342. https://doi.org/10.1016/0092-8674(94)90302-6
  • Shimizu, A., Tada, K., Shukunami, C., Hiraki, Y., Kurokawa, T., Magane, N., & Kurokawa-Seo, M. (2001). A novel alternatively spliced fibroblast growth factor receptor 3 isoform lacking the acid box domain is expressed during chondrogenic differentiation of ATDC5 cells. The Journal of Biological Chemistry, 276(14), 11031–11040. https://doi.org/10.1074/jbc.M003535200
  • Shimizu, A., Takashima, Y., & Kurokawa-Seo, M. (2002). FGFR3 isoforms have distinct functions in the regulation of growth and cell morphology. Biochemical and Biophysical Research Communications, 290(1), 113–120. https://doi.org/10.1006/bbrc.2001.6190
  • Silventoinen, K., Sammalisto, S., Perola, M., Boomsma, D. I., Cornes, B. K., Davis, C., Dunkel, L., De Lange, M., Harris, J. R., Hjelmborg, J. V., Luciano, M., Martin, N. G., Mortensen, J., Nisticò, L., Pedersen, N. L., Skytthe, A., Spector, T. D., Stazi, M. A., Willemsen, G., & Kaprio, J. (2003). Heritability of adult body height: A comparative study of twin cohorts in eight countries. Twin Research: The Official Journal of the International Society for Twin Studies, 6(5), 399–408. https://doi.org/10.1375/136905203770326402
  • Sisley, S., Trujillo, M. V., Khoury, J., & Backeljauw, P. (2013). Low incidence of pathology detection and high cost of screening in the evaluation of asymptomatic short children. The Journal of Pediatrics, 163(4), 1045–1051. https://doi.org/10.1016/j.jpeds.2013.04.002
  • Trujillo-Tiebas, M. J., Fenollar-Cortés, M., Lorda-Sánchez, I., Díaz-Recasens, J., Carrillo Redondo, A., Ramos-Corrales, C., & Ayuso, C. (2009). Prenatal diagnosis of skeletal dysplasia due to FGFR3 gene mutations: A 9-year experience: Prenatal diagnosis in FGFR3 gene. Journal of Assisted Reproduction and Genetics, 26(8), 455–460. https://doi.org/10.1007/s10815-009-9339-1
  • Ullah, A., Umair, M., Muhammad, D., Bilal, M., Lee, K., Leal, S. M., & Ahmad, W. (2018). A novel homozygous variant in BMPR1B underlies acromesomelic dysplasia Hunter-Thompson type. Annals of Human Genetics, 82(3), 129–134. https://doi.org/10.1111/ahg.12233
  • Umair, M., Rafique, A., Ullah, A., Ahmad, F., Ali, R. H., Nasir, A., Ansar, M., & Ahmad, W. (2017). Novel homozygous sequence variants in the GDF5 gene underlie acromesomelic dysplasia type-grebe in consanguineous families. Congenital Anomalies, 57(2), 45–51. https://doi.org/10.1111/cga.12187
  • Umair, M., Seidel, H., Ahmed, I., Ullah, A., Haack, T. B., Alhaddad, B., Jan, A., Rafique, A., Strom, T. M., Ahmad, F., Meitinger, T., & Ahmad, W. (2017). Ellis-van Creveld syndrome and profound deafness resulted by sequence variants in the EVC/EVC2 and TMC1 genes. Journal of Genetics, 96(6), 1005–1014. https://doi.org/10.1007/s12041-017-0868-6
  • Vajo, Z., Francomano, C. A., & Wilkin, D. J. (2000). The molecular and genetic basis of fibroblast growth factor receptor 3 disorders: The achondroplasia family of skeletal dysplasias, Muenke craniosynostosis, and Crouzon syndrome with acanthosis nigricans. Endocrine Reviews, 21(1), 23–39. https://doi.org/10.1210/edrv.21.1.0387
  • Vakili, R., & Hashemian, S. (2018). Primordial dwarfism: A case series from north east of Iran and literature review. Journal of Pediatrics Review, 7(2), 113–120. https://doi.org/10.32598/jpr.7.2.113
  • Visscher, P. M. (2013). Commentary: Height and Mendel’s theory: The long and the short of it. International Journal of Epidemiology, 42(4), 944–945. https://doi.org/10.1093/ije/dyt069
  • Webster, M. K., & Donoghue, D. J. (1996). Constitutive activation of fibroblast growth factor receptor 3 by the transmembrane domain point mutation found in achondroplasia. The EMBO Journal, 15(3), 520–527. https://doi.org/10.1002/j.1460-2075.1996.tb00384.x
  • Willems, M., Genevieve, D., Borck, G., Baujat, G., Gerard, M., Heron, D., Leheup, B., Le Merrer, M., Verloes, A., Colleaux, L., & Munnich, A. (2008). Pericentrin molecular analysis in 22 Seckel/MOPDII patients. 58th Annual Meeting, American Society of Human Genetics, Philadelphia, PA.
  • Zaib, S., Rana, N., Ali, H. S., Hussain, N., Areeba, Ogaly, H. A., Al-Zahrani, F. A. M., & Khan, I. (2023). Discovery of druggable potent inhibitors of serine proteases and farnesoid X receptor by ligand-based virtual screening to obstruct SARS-CoV-2.International Journal of Biological Macromolecules, 253(Pt 7), 127379. https://doi.org/10.1016/j.ijbiomac.2023.127379

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.