106
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multistage in silico approach to identify novel quinoline derivatives as potential c-kit kinase inhibitors

, , , &
Received 11 Aug 2023, Accepted 15 Jan 2024, Published online: 29 Jan 2024

References

  • Adam, R., et al. (2006). Hepatic resection for noncolorectal nonendocrine liver metastases: Analysis of 1452 patients and development of a prognostic model. Annals of Surgery, 244(4), 524–535.
  • Adenis, A., Blay, J.-Y., Bui-Nguyen, B., Bouché, O., Bertucci, F., Isambert, N., Bompas, E., Chaigneau, L., Domont, J., Ray-Coquard, I., Blésius, A., Van Tine, B. A., Bulusu, V. R., Dubreuil, P., Mansfield, C. D., Acin, Y., Moussy, A., Hermine, O., & Le Cesne, A. (2014). Masitinib in advanced gastrointestinal stromal tumor (GIST) after failure of imatinib: A randomized controlled open-label trial. Annals of Oncology, 25(9), 1762–1769. https://doi.org/10.1093/annonc/mdu237
  • Adnan, M., Shamsi, A., Elasbali, A. M., Siddiqui, A. J., Patel, M., Alshammari, N., Alharethi, S. H., Alhassan, H. H., Bardakci, F., & Hassan, M. I. (2022). Structure-guided approach to discover tuberosin as a potent activator of pyruvate kinase M2, targeting cancer therapy. International Journal of Molecular Sciences, 23(21), 13172. https://doi.org/10.3390/ijms232113172
  • Anant, A., Ali, A., Ali, A., Gupta, G. D., & Asati, V. (2021). A Computational approach to discover potential quinazoline derivatives against CDK4/6 kinase. Journal of Molecular Structure, 1245, 131079. https://doi.org/10.1016/j.molstruc.2021.131079
  • Angiolini, M. (2020). The Role of Structural Biology in Kinase Inhibitor Drug Discovery Success. Structural Biology in Drug Discovery: Methods, Techniques, and Practices, p. 363–393.
  • Antonescu, C. R., Besmer, P., Guo, T., Arkun, K., Hom, G., Koryotowski, B., Leversha, M. A., Jeffrey, P. D., Desantis, D., Singer, S., Brennan, M. F., Maki, R. G., & DeMatteo, R. P. (2005). Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clinical Cancer Research, 11(11), 4182–4190. https://doi.org/10.1158/1078-0432.CCR-04-2245
  • Asati, V., Bharti, S. K., & Budhwani, A. K. (2017). 3D-QSAR and virtual screening studies of thiazolidine-2, 4-dione analogs: Validation of experimental inhibitory potencies towards PIM-1 kinase. Journal of Molecular Structure, 1133, 278–293. https://doi.org/10.1016/j.molstruc.2016.12.006
  • Asati, V., Mahapatra, D. K., & Bharti, S. K. (2014). Thiazolidine-2, 4-diones as multi-targeted scaffold in medicinal chemistry: Potential anticancer agents. European Journal of Medicinal Chemistry, 87, 814–833. https://doi.org/10.1016/j.ejmech.2014.10.025
  • Asati, V., Thakur, S. S., Upmanyu, N., & Bharti, S. K. (2018). Virtual Screening, Molecular Docking, and DFT Studies of Some Thiazolidine‐2, 4‐diones as Potential PIM‐1 Kinase Inhibitors. ChemistrySelect, 3(1), 127–135. https://doi.org/10.1002/slct.201702392
  • Bajaj, S., Asati, V., Singh, J., & Roy, P. P. (2015). 1, 3, 4-Oxadiazoles: An emerging scaffold to target growth factors, enzymes and kinases as anticancer agents. European Journal of Medicinal Chemistry, 97, 124–141. https://doi.org/10.1016/j.ejmech.2015.04.051
  • Berry, S. J., Coffey, D. S., Walsh, P. C., & Ewing, L. L. (1984). The development of human benign prostatic hyperplasia with age. Journal of Urology, 132(3), 474–479. https://doi.org/10.1016/s0022-5347(17)49698-4
  • Bhattacharya, S., Asati, V., Ali, A., Ali, A., & Gupta, G. D. (2022). In-silico studies for the development of novel RET inhibitors for cancer treatment. Journal of Molecular Structure, 1251, 132040. https://doi.org/10.1016/j.molstruc.2021.132040
  • Bhattacharya, S., Asati, V., Mishra, M., Das, R., Kashaw, V., & Kashaw, S. K. (2021). Integrated computational approach on sodium-glucose co-transporter 2 (SGLT2) Inhibitors for the development of novel antidiabetic agents. Journal of Molecular Structure, 1227, 129511. https://doi.org/10.1016/j.molstruc.2020.129511
  • Buchdunger, E., Cioffi, C. L., Law, N., Stover, D., Ohno-Jones, S., Druker, B. J., & Lydon, N. B. (2000). Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. Journal of Pharmacology and Experimental Therapeutics, 295(1), 139–145.
  • Burch, J., & Collins, B. (2021). Oxford handbook of gastrointestinal nursing. Oxford University Press.
  • Chandel, S., Singh, R., Gautam, A., & Ravichandiran, V. (2022). Screening of Azadirachta indica phytoconstituents as GSK-3β inhibitor and its implication in neuroblastoma: Molecular docking, molecular dynamics, MM-PBSA binding energy, and in-vitro study. Journal of Biomolecular Structure & Dynamics, 40(23), 12827–12840. https://doi.org/10.1080/07391102.2021.1977705
  • Corless, C. L., Fletcher, J. A., & Heinrich, M. C. (2004). Biology of gastrointestinal stromal tumors. Journal of Clinical Oncology, 22(18), 3813–3825. https://doi.org/10.1200/JCO.2004.05.140
  • Costa, M. G. S., Batista, P. R., Bisch, P. M., & Perahia, D. (2015). Exploring free energy landscapes of large conformational changes: Molecular dynamics with excited normal modes. Journal of Chemical Theory and Computation, 11(6), 2755–2767. https://doi.org/10.1021/acs.jctc.5b00003
  • Cruz, S., Gomes, S. E., Borralho, P. M., Rodrigues, C. M. P., Gaudêncio, S. P., & Pereira, F. (2018). In silico HCT116 human colon cancer cell-based models en route to the discovery of lead-like anticancer drugs. Biomolecules, 8(3), 56. https://doi.org/10.3390/biom8030056
  • Debiec-Rychter, M., Cools, J., Dumez, H., Sciot, R., Stul, M., Mentens, N., Vranckx, H., Wasag, B., Prenen, H., Roesel, J., Hagemeijer, A., Van Oosterom, A., & Marynen, P. (2005). Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology, 128(2), 270–279. https://doi.org/10.1053/j.gastro.2004.11.020
  • Demetri, G. D., von Mehren, M., Blanke, C. D., Van den Abbeele, A. D., Eisenberg, B., Roberts, P. J., Heinrich, M. C., Tuveson, D. A., Singer, S., Janicek, M., Fletcher, J. A., Silverman, S. G., Silberman, S. L., Capdeville, R., Kiese, B., Peng, B., Dimitrijevic, S., Druker, B. J., Corless, C., Fletcher, C. D. M., & Joensuu, H. (2002). Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. The New England Journal of Medicine, 347(7), 472–480. https://doi.org/10.1056/NEJMoa020461
  • Dionne, U., Chartier, F. J. M., López de Los Santos, Y., Lavoie, N., Bernard, D. N., Banerjee, S. L., Otis, F., Jacquet, K., Tremblay, M. G., Jain, M., Bourassa, S., Gish, G. D., Gagné, J.-P., Poirier, G. G., Laprise, P., Voyer, N., Landry, C. R., Doucet, N., & Bisson, N. (2018). Direct phosphorylation of SRC homology 3 domains by tyrosine kinase receptors disassembles ligand-induced signaling networks. Molecular Cell, 70(6), 995–1007. e11. https://doi.org/10.1016/j.molcel.2018.05.013
  • Singh, R., Gautam, A., Chandel, S., Sharma, V., Ghosh, A., Dey, D., Roy, S., Ravichandiran, V., & Ghosh, D. (2021). Computational screening of FDA approved drugs of fungal origin that may interfere with SARS-CoV-2 spike protein activation, viral RNA replication, and post-translational modification: a multiple target approach.In Silico Pharmacology, 9(1), 27. https://doi.org/10.1007/s40203-021-00089-8
  • Giamas, G., Man, Y. L., Hirner, H., Bischof, J., Kramer, K., Khan, K., Ahmed, S. S. L., Stebbing, J., & Knippschild, U. (2010). Kinases as targets in the treatment of solid tumors. Cellular Signalling, 22(7), 984–1002. https://doi.org/10.1016/j.cellsig.2010.01.011
  • Gill, A. J. (2018). Succinate dehydrogenase (SDH)‐deficient neoplasia. Histopathology, 72(1), 106–116. https://doi.org/10.1111/his.13277
  • Gromova, P., Ralea, S., Lefort, A., Libert, F., Rubin, B. P., Erneux, C., & Vanderwinden, J.-M. (2009). Kit K641E oncogene up‐regulates Sprouty homolog 4 and trophoblast glycoprotein in interstitial cells of Cajal in a murine model of gastrointestinal stromal tumours. Journal of Cellular and Molecular Medicine, 13(8a), 1536–1548. https://doi.org/10.1111/j.1582-4934.2009.00768.x
  • Gulzar, M., Ali, S., Khan, F. I., Khan, P., Taneja, P., & Hassan, M. I. (2019). Binding mechanism of caffeic acid and simvastatin to the integrin linked kinase for therapeutic implications: A comparative docking and MD simulation studies. Journal of Biomolecular Structure & Dynamics, 37(16), 4327–4337. https://doi.org/10.1080/07391102.2018.1546621
  • Guo, T., Agaram, N. P., Wong, G. C., Hom, G., D'Adamo, D., Maki, R. G., Schwartz, G. K., Veach, D., Clarkson, B. D., Singer, S., DeMatteo, R. P., Besmer, P., & Antonescu, C. R. (2007). Sorafenib inhibits the imatinib-resistant KIT T670I gatekeeper mutation in gastrointestinal stromal tumor. Clinical Cancer Research, 13(16), 4874–4881. https://doi.org/10.1158/1078-0432.CCR-07-0484
  • Heinrich, M. C., Griffith, D. J., Druker, B. J., Wait, C. L., Ott, K. A., & Zigler, A. J. (2000). Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood, 96(3), 925–932. https://doi.org/10.1182/blood.V96.3.925.015k50_925_932
  • Irie, T., & Sawa, M. (2018). 7-Azaindole: A versatile scaffold for developing kinase inhibitors. Chemical & Pharmaceutical Bulletin, 66(1), 29–36. https://doi.org/10.1248/cpb.c17-00380
  • Joensuu, H., Fletcher, C., Dimitrijevic, S., Silberman, S., Roberts, P., & Demetri, G. (2002). Management of malignant gastrointestinal stromal tumours. The Lancet Oncology, 3(11), 655–664. https://doi.org/10.1016/s1470-2045(02)00899-9
  • Joensuu, H., Roberts, P. J., Sarlomo-Rikala, M., Andersson, L. C., Tervahartiala, P., Tuveson, D., Silberman, S., Capdeville, R., Dimitrijevic, S., Druker, B., & Demetri, G. D. (2001). Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. New England Journal of Medicine, 344(14), 1052–1056. https://doi.org/10.1056/NEJM200104053441404
  • Khan, M. F., Verma, G., Akhtar, W., Shaquiquzzaman, M., Akhter, M., Rizvi, M. A., & Alam, M. M. (2019). Pharmacophore modeling, 3D-QSAR, docking study and ADME prediction of acyl 1, 3, 4-thiadiazole amides and sulfonamides as antitubulin agents. Arabian Journal of Chemistry, 12(8), 5000–5018. https://doi.org/10.1016/j.arabjc.2016.11.004
  • Knab, L. M., & Yang, A. (2016). Gastric and Small Bowel Tumors. Gastrointestinal Malignancies, p. 1–16.
  • Kumari, R., Kumar, R., Open Source Drug Discovery, C., & Lynn, A, Open Source Drug Discovery Consortium. (2014). g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Ma, Z., Zhou, J., Liu, K., Chen, S., Wu, Q., Peng, L., Zhao, W., & Zhu, S. (1997). A Phase III randomized study of interleukin‐2 lymphokine‐activated killer cell immunotherapy combined with chemotherapy or radiotherapy after curative or noncurative resection of primary lung carcinoma. Radiation Oncology (London, England), 19(1), 8–49. https://doi.org/10.1002/(SICI)1097-0142(19970701)80:1<42::AID-CNCR6>3.0.CO;2-H
  • Mahapatra, D. K., Bharti, S. K., & Asati, V. (2015). Anti-cancer chalcones: Structural and molecular target perspectives. European Journal of Medicinal Chemistry, 98, 69–114. https://doi.org/10.1016/j.ejmech.2015.05.004
  • Mahor, A., Sawant, D. M., & Goyal, A. K. (2023). The Custom R group Enumeration with various R group Libraries at designated Sites on Amphotericin B. Current Computer-Aided Drug Design, 19(5), 382–390. https://doi.org/10.2174/1573409919666230123144712
  • Mallick, C., Mishra, M., Asati, V., Kashaw, V., Das, R., Iyer, A. K., & Kashaw, S. K. (2022). Integrated Computational Analysis on Some Indolo-quinoline Derivatives for the Development of Novel Antiplasmodium Agents: CoMFA, Pharmacophore Mapping, Molecular Docking and ADMET Studies. Current Signal Transduction Therapy, 17(1), 12–58. https://doi.org/10.2174/1574362416666210906155929
  • Miettinen, M., Sobin, L. H., & Sarlomo-Rikala, M. (2000). Immunohistochemical spectrum of GISTs at different sites and their differential diagnosis with a reference to CD117 (KIT). Modern Pathology, 13(10), 1134–1142. https://doi.org/10.1038/modpathol.3880210
  • Pal, S., Kumar, V., Kundu, B., Bhattacharya, D., Preethy, N., Reddy, M. P., & Talukdar, A. (2019). Ligand-based pharmacophore modeling, virtual screening and molecular docking studies for discovery of potential topoisomerase I inhibitors. Computational and Structural Biotechnology Journal, 17, 291–310. https://doi.org/10.1016/j.csbj.2019.02.006
  • Pawson, T. (2002). Regulation and targets of receptor tyrosine kinases. European Journal of Cancer (Oxford, England: 1990), 38 Suppl 5, S3–S10. https://doi.org/10.1016/s0959-8049(02)80597-4
  • Rathore, A., Asati, V., Mishra, M., Das, R., Kashaw, V., & Kashaw, S. K. (2022). Computational approaches for the design of novel dopamine D2 and serotonin 5-HT2A receptor dual antagonist towards schizophrenia. In Silico Pharmacology, 10(1), 7. https://doi.org/10.1007/s40203-022-00121-5
  • Rondla, R., Padma Rao, L. S., Ramatenki, V., Vadija, R., Mukkera, T., Potlapally, S. R., & Vuruputuri, U. (2017). Azolium analogues as CDK4 inhibitors: Pharmacophore modeling, 3D QSAR study and new lead drug discovery. Journal of Molecular Structure, 1134, 482–491. https://doi.org/10.1016/j.molstruc.2016.12.106
  • Saha, M., Gupta, S., Dhiman, S., Asati, V., Ali, A., & Ali, A. (2023). Field and atom-based 3D-QSAR models of chromone (1-benzopyran-4-one) derivatives as MAO inhibitors. Journal of Biomolecular Structure & Dynamics, 41(21), 12171–12185. p https://doi.org/10.1080/07391102.2023.2166122
  • Singh, R., Gautam, A., Chandel, S., Sharma, V., Ghosh, A., Dey, D., Roy, S., Ravichandiran, V., & Ghosh, D. (2021). Computational screening of FDA approved drugs of fungal origin that may interfere with SARS-CoV-2 spike protein activation, viral RNA replication, and post‐translational modification: A multiple target approach. In Silico Pharmacology, 9(1), 27. https://doi.org/10.1007/s40203-021-00089-8
  • Thomas, R., Mary, Y. S., Resmi, K. S., Narayana, B., Sarojini, B. K., Vijayakumar, G., & Van Alsenoy, C. (2019). Two neoteric pyrazole compounds as potential anti-cancer agents: Synthesis, electronic structure, physico-chemical properties and docking analysis. Journal of Molecular Structure, 1181, 455–466. https://doi.org/10.1016/j.molstruc.2019.01.003
  • Verweij, J., Casali, P. G., Zalcberg, J., LeCesne, A., Reichardt, P., Blay, J.-Y., Issels, R., van Oosterom, A., Hogendoorn, P. C. W., Van Glabbeke, M., Bertulli, R., & Judson, I. (2004). Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: Randomised trial. Lancet (London, England), 364(9440), 1127–1134. https://doi.org/10.1016/S0140-6736(04)17098-0
  • Wang, J., Hou, T., & Xu, X. (2006). Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Current Computer Aided-Drug Design, 2(3), 287–306. https://doi.org/10.2174/157340906778226454
  • Wang, Y.-M., Gu, M.-L., & Ji, F. (2015). Succinate dehydrogenase-deficient gastrointestinal stromal tumors. World Journal of Gastroenterology, 21(8), 2303–2314. https://doi.org/10.3748/wjg.v21.i8.2303
  • Weisberg, E., Manley, P. W., Breitenstein, W., Brüggen, J., Cowan-Jacob, S. W., Ray, A., Huntly, B., Fabbro, D., Fendrich, G., Hall-Meyers, E., Kung, A. L., Mestan, J., Daley, G. Q., Callahan, L., Catley, L., Cavazza, C., Azam, M., Neuberg, D., Wright, R. D., Gilliland, D. G., & Griffin, J. D. (2005). Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell, 7(2), 129–141. https://doi.org/10.1016/j.ccr.2005.01.007
  • Wu, C.-E., Tzen, C.-Y., Wang, S.-Y., & Yeh, C.-N. (2019). Clinical diagnosis of gastrointestinal stromal tumor (GIST): from the molecular genetic point of view. Cancers, 11(5), 679. https://doi.org/10.3390/cancers11050679
  • Yamamoto, H., & Oda, Y. (2015). Gastrointestinal stromal tumor: Recent advances in pathology and genetics. Pathology International, 65(1), 9–18. https://doi.org/10.1111/pin.12230
  • Zuccotto, F., Ardini, E., Casale, E., & Angiolini, M. (2010). Through the “gatekeeper door”: exploiting the active kinase conformation. Journal of Medicinal Chemistry, 53(7), 2681–2694. https://doi.org/10.1021/jm901443h

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.