262
Views
0
CrossRef citations to date
0
Altmetric
Review Article

AI-driven covalent drug design strategies targeting main protease (mpro) against SARS-CoV-2: structural insights and molecular mechanisms

, , , , , & show all
Received 09 Nov 2023, Accepted 17 Jan 2024, Published online: 29 Jan 2024

References

  • Agost-Beltrán, L., de la Hoz-Rodríguez, S., Bou-Iserte, L., Rodríguez, S., Fernández-de-la-Pradilla, A., & González, F. V. (2022). Advances in the development of SARS-CoV-2 Mpro inhibitors. Molecules (Basel, Switzerland), 27(8), 2523. https://doi.org/10.3390/molecules27082523
  • Agrawal, P., Agrawal, C., & Blunden, G. (2022). RETRACTED: artemisia extracts and artemisinin-based antimalarials for COVID-19 management: Could These be effective antivirals for COVID-19 treatment? Molecules (Basel, Switzerland), 27(12), 3828. https://doi.org/10.3390/molecules27123828
  • Akhoon, B. A., Tiwari, H., & Nargotra, A. (2019). In Silico drug design methods for drug repurposing. In In Silico Drug Design (pp. 47–84). Elsevier. https://doi.org/10.1016/B978-0-12-816125-8.00003-1
  • Anand, K., Palm, G. J., Mesters, J. R., Siddell, S. G., Ziebuhr, J., & Hilgenfeld, R. (2002). Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. The EMBO Journal, 21(13), 3213–3224. https://doi.org/10.1093/emboj/cdf327
  • Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., & Hilgenfeld, R. (2003). Coronavirus main proteinase (3CL pro) structure: Basis for design of anti-SARS drugs. Science, 300(5626), 1763–1767. https://doi.org/10.1126/science.1085658
  • Ataba, E., Dorkenoo, A. M., Nguepou, C. T., Bakai, T., Tchadjobo, T., Kadzahlo, K. D., Yakpa, K., & Atcha-Oubou, T. (2022). Potential Emergence of plasmodium resistance to artemisinin induced by the use of artemisia annua for malaria and COVID-19 prevention in Sub-African Region. Acta Parasitologica, 67(1), 55–60. https://doi.org/10.1007/s11686-021-00489-y
  • Bafna, K., Cioffi, C. L., Krug, R. M., & Montelione, G. T. (2022). Structural similarities between SARS-CoV2 3CLpro and other viral proteases suggest potential lead molecules for developing broad spectrum antivirals. Frontiers in Chemistry, 10, 948553. https://doi.org/10.3389/fchem.2022.948553
  • Bai, Y., Ye, F., Feng, Y., Liao, H., Song, H., Qi, J., Gao, G. F., Tan, W., Fu, L., & Shi, Y. (2021). Structural basis for the inhibition of the SARS-CoV-2 main protease by the anti-HCV drug narlaprevir. Signal Transduction and Targeted Therapy, 6(1), 51. https://doi.org/10.1038/s41392-021-00468-9
  • Bayani, F., Hashkavaei, N. S., Arjmand, S., Rezaei, S., Uskoković, V., Alijanianzadeh, M., Uversky, V. N., Ranaei Siadat, S. O., Mozaffari-Jovin, S., & Sefidbakht, Y. (2023). An overview of the vaccine platforms to combat COVID-19 with a focus on the subunit vaccines. Progress in Biophysics and Molecular Biology, 178, 32–49. https://doi.org/10.1016/j.pbiomolbio.2023.02.004
  • Bayani, F., Safaei Hashkavaei, N., Karamian, M. R., Uskoković, V., & Sefidbakht, Y. (2023). In silico design of a multi-epitope vaccine against the spike and the nucleocapsid proteins of the Omicron variant of SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 41(21), 11748–11762. https://doi.org/10.1080/07391102.2023.2170470
  • Beigel, J. H., ACTT-1 Study Group Members, Tomashek, K. M., Dodd, L. E., Mehta, A. K., Zingman, B. S., Kalil, A. C., Hohmann, E., Chu, H. Y., Luetkemeyer, A., Kline, S., Lopez de Castilla, D., Finberg, R. W., Dierberg, K., Tapson, V., Hsieh, L., Patterson, T. F., Paredes, R., Sweeney, D. A., Short, W. R., Touloumi, G., Lye, D. C., & Lane, H. C. (2020). Remdesivir for the treatment of Covid-19—final report. The New England Journal of Medicine, 383(19), 1813–1826. https://doi.org/10.1056/NEJMoa2007764
  • Benetel, G., Silva, T. D S., Fagundes, G. M., Welter, K. C., Melo, F. A., Lobo, A. A. G., Muir, J. P., & Bueno, I. C. S. (2022). Essential oils as in vitro ruminal fermentation manipulators to mitigate methane emission by beef cattle grazing tropical grasses. Molecules (Basel, Switzerland), 27(7), 2227. https://doi.org/10.3390/molecules27072227
  • Blanco-González, A., Cabezón, A., Seco-González, A., Conde-Torres, D., Antelo-Riveiro, P., Piñeiro, Á., & Garcia-Fandino, R. (2023). The role of AI in drug discovery: Challenges, opportunities, and strategies. Pharmaceuticals (Basel, Switzerland), 16(6), 891. https://doi.org/10.3390/ph16060891
  • Bung, N., Krishnan, S. R., Bulusu, G., & Roy, A. (2021). De novo design of new chemical entities for SARS-CoV-2 using artificial intelligence. Future Medicinal Chemistry, 13(6), 575–585. https://doi.org/10.4155/fmc-2020-0262
  • Chan, H. C. S., Shan, H., Dahoun, T., Vogel, H., & Yuan, S. (2019). Advancing drug discovery via artificial intelligence. Trends in Pharmacological Sciences, 40(8), 592–604. https://doi.org/10.1016/j.tips.2019.06.004
  • Che, Y., Jiang, D., Zhang, Y., Zhang, J., Xu, T., Sun, Y., Fan, J., Wang, J., Chang, N., Wu, Y., Yang, S., Xu, L., Ding, J., Hu, C., Huang, Y., Zhang, J., & Yang, K. (2022). Elevated ubiquitination contributes to protective immunity against severe SARS‐CoV‐2 infection. Clinical and Translational Medicine, 12(12), e1103. https://doi.org/10.1002/ctm2.1103
  • Chen, W., Liu, X., Zhang, S., & Chen, S. (2023). Artificial intelligence for drug discovery: Resources, methods, and applications. Molecular Therapy. Nucleic Acids, 31, 691–702. https://doi.org/10.1016/j.omtn.2023.02.019
  • Chou, K.-C., Wei, D.-Q., & Zhong, W.-Z. (2003). Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Biochemical and Biophysical Research Communications, 308(1), 148–151. https://doi.org/10.1016/S0006-291X(03)01342-1
  • Choudhury, C., Arul Murugan, N., & Priyakumar, U. D. (2022). Structure-based drug repurposing: Traditional and advanced AI/ML-aided methods. Drug Discovery Today, 27(7), 1847–1861. https://doi.org/10.1016/j.drudis.2022.03.006
  • Clemente-Suárez, V. J., Martínez-González, M. B., Benitez-Agudelo, J. C., Navarro-Jiménez, E., Beltran-Velasco, A. I., Ruisoto, P., Diaz Arroyo, E., Laborde-Cárdenas, C. C., & Tornero-Aguilera, J. F. (2021). The Impact of the COVID-19 Pandemic on Mental Disorders. A Critical Review. International Journal of Environmental Research and Public Health, 18(19), 10041. https://doi.org/10.3390/ijerph181910041
  • Dai, W., Zhang, B., Jiang, X.-M., Su, H., Li, J., Zhao, Y., Xie, X., Jin, Z., Peng, J., Liu, F., Li, C., Li, Y., Bai, F., Wang, H., Cheng, X., Cen, X., Hu, S., Yang, X., Wang, J., … Liu, H. (2020). Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science (New York, N.Y.), 368(6497), 1331–1335. https://doi.org/10.1126/science.abb4489
  • Deng, J., Zhou, F., Hou, W., Heybati, K., Ali, S., Chang, O., Silver, Z., Dhivagaran, T., Ramaraju, H. B., Wong, C. Y., Zuo, Q. K., Lapshina, E., & Mellett, M. (2022). Efficacy of lopinavir–ritonavir combination therapy for the treatment of hospitalized COVID-19 patients: A meta-analysis. Future Virology, 17(3), 169–189. https://doi.org/10.2217/fvl-2021-0066
  • Duong, C. Q., & Nguyen, P. T. V. (2023). Exploration of SARS-CoV-2 Mpro noncovalent natural inhibitors using structure-based approaches. ACS Omega, 8(7), 6679–6688. https://doi.org/10.1021/acsomega.2c07259
  • Elend, L., Jacobsen, L., Cofala, T., Prellberg, J., Teusch, T., Kramer, O., & Solov’yov, I. A. (2022). Design of SARS-CoV-2 main protease inhibitors using artificial intelligence and molecular dynamic simulations. Molecules (Basel, Switzerland), 27(13), 4020. https://doi.org/10.3390/molecules27134020
  • Falahi, S., & Kenarkoohi, A. (2022). Host factors and vaccine efficacy: Implications for COVID‐19 vaccines. Journal of Medical Virology, 94(4), 1330–1335. https://doi.org/10.1002/jmv.27485
  • Faridoon, Ng, R., Zhang, G., & Li, J. J. (2023). An update on the discovery and development of reversible covalent inhibitors. Medicinal Chemistry Research: An International Journal for Rapid Communications on Design and Mechanisms of Action of Biologically Active Agents, 32(6), 1039–1062. https://doi.org/10.1007/s00044-023-03065-3
  • Fischer, C., & Feys, J. R. (2023). SARS-CoV-2 Mpro inhibitors: Achieved diversity, developing resistance and future strategies. Future Pharmacology, 3(1), 80–107. https://doi.org/10.3390/futurepharmacol3010006
  • Gehringer, M., & Laufer, S. A. (2019). Emerging and re-emerging warheads for targeted covalent inhibitors: Applications in medicinal chemistry and chemical biology. Journal of Medicinal Chemistry, 62(12), 5673–5724. https://doi.org/10.1021/acs.jmedchem.8b01153
  • Ghasemlou, A., Uskoković, V., & Sefidbakht, Y. (2023). Exploration of potential inhibitors for SARS‐CoV‐2 Mpro considering its mutants via structure‐based drug design, molecular docking, MD simulations, MM/PBSA, and DFT calculations. Biotechnology and Applied Biochemistry, 70(1), 439–457. https://doi.org/10.1002/bab.2369
  • Ghassemlou, A., Sefidbakht, Y., & Rahmandoust, M. (2021). The main protease of SARS COV-2 and its specific inhibitors. In COVID-19 (pp. 121–147). Springer Singapore. https://doi.org/10.1007/978-981-16-3108-5_4
  • Gimeno, A., Ojeda-Montes, M., Tomás-Hernández, S., Cereto-Massagué, A., Beltrán-Debón, R., Mulero, M., Pujadas, G., & Garcia-Vallvé, S. (2019). The Light and dark sides of virtual screening: What is there to know? International Journal of Molecular Sciences, 20(6), 1375. https://doi.org/10.3390/ijms20061375
  • Gomes, I. D S., Santana, C. A., Marcolino, L. S., Lima, L. H. F. D., Melo-Minardi, R. C. D., Dias, R. S., de Paula, S. O., & Silveira, S. D A. (2022). Computational prediction of potential inhibitors for SARS-COV-2 main protease based on machine learning, docking, MM-PBSA calculations, and metadynamics. PLOS One, 17(4), e0267471. https://doi.org/10.1371/journal.pone.0267471
  • Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams, R. P., & Aspuru-Guzik, A. (2018). Automatic chemical design using a data-driven continuous representation of molecules. ACS Central Science, 4(2), 268–276. https://doi.org/10.1021/acscentsci.7b00572
  • Gorbalenya, A. E., Snijder, E. J., & Ziebuhr, J. (2000). Virus-encoded proteinases and proteolytic processing in the Nidovirales. The Journal of General Virology, 81(Pt 4), 853–879. https://doi.org/10.1099/0022-1317-81-4-853
  • Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., O'Meara, M. J., Rezelj, V. V., Guo, J. Z., Swaney, D. L., Tummino, T. A., Hüttenhain, R., Kaake, R. M., Richards, A. L., Tutuncuoglu, B., Foussard, H., Batra, J., Haas, K., Modak, M., … Krogan, N. J. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583(7816), 459–468. https://doi.org/10.1038/s41586-020-2286-9
  • Goyal, B., & Goyal, D. (2020). Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum therapeutic strategy. ACS Combinatorial Science, 22(6), 297–305. https://doi.org/10.1021/acscombsci.0c00058
  • Harrer, S., Shah, P., Antony, B., & Hu, J. (2019). Artificial Intelligence for clinical trial design. Trends in Pharmacological Sciences, 40(8), 577–591. https://doi.org/10.1016/j.tips.2019.05.005
  • Hosogaya, N., Nelfinavir Study Group, Miyazaki, T., Fukushige, Y., Takemori, S., Morimoto, S., Yamamoto, H., Hori, M., Kurokawa, T., Kawasaki, Y., Hanawa, M., Fujii, Y., Hanaoka, H., Iwami, S., Watashi, K., Yamagoe, S., Miyazaki, Y., Wakita, T., Izumikawa, K., Yanagihara, K., Mukae, H., & Kohno, S. (2021). Efficacy and safety of nelfinavir in asymptomatic and mild COVID-19 patients: A structured summary of a study protocol for a multicenter, randomized controlled trial. Trials, 22(1), 309. https://doi.org/10.1186/s13063-021-05282-w
  • Hsu, M.-F., Kuo, C.-J., Chang, K.-T., Chang, H.-C., Chou, C.-C., Ko, T.-P., Shr, H.-L., Chang, G.-G., Wang, A. H.-J., & Liang, P.-H. (2005). Mechanism of the maturation process of SARS-CoV 3CL protease. The Journal of Biological Chemistry, 280(35), 31257–31266. https://doi.org/10.1074/jbc.M502577200
  • Hu, Q., Xiong, Y., Zhu, G., Zhang, Y., Zhang, Y., Huang, P., & Ge, G. (2022). The SARS‐CoV‐2 main protease (M pro): Structure, function, and emerging therapies for COVID‐19. MedComm, 3(3), e151. https://doi.org/10.1002/mco2.151
  • Huang, F., Han, X., Xiao, X., & Zhou, J. (2022). Covalent warheads targeting cysteine residue: The promising approach in drug development. Molecules (Basel, Switzerland), 27(22), 7728. https://doi.org/10.3390/molecules27227728
  • Jacobs, J., Grum-Tokars, V., Zhou, Y., Turlington, M., Saldanha, S. A., Chase, P., Eggler, A., Dawson, E. S., Baez-Santos, Y. M., Tomar, S., Mielech, A. M., Baker, S. C., Lindsley, C. W., Hodder, P., Mesecar, A., & Stauffer, S. R. (2013). Discovery, synthesis, and structure-based optimization of a series of N - (tert -Butyl)-2- (N -arylamido)-2-(pyridin-3-yl) Acetamides (ML188) as potent noncovalent small molecule inhibitors of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3. Journal of Medicinal Chemistry, 56(2), 534–546. https://doi.org/10.1021/jm301580n
  • Jaiswal, G., Yaduvanshi, S., & Kumar, V. (2022). A potential peptide inhibitor of SARS-CoV-2 S and human ACE2 complex. Journal of Biomolecular Structure & Dynamics, 40(14), 6671–6681. https://doi.org/10.1080/07391102.2021.1889665
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Johnson, T. O., Adegboyega, A. E., Ojo, O. A., Yusuf, A. J., Iwaloye, O., Ugwah-Oguejiofor, C. J., Asomadu, R. O., Chukwuma, I. F., Ejembi, S. A., Ugwuja, E. I., Alotaibi, S. S., Albogami, S. M., Batiha, G. E.-S., Rajab, B. S., & Conte-Junior, C. A. (2022). A computational approach to elucidate the interactions of chemicals from artemisia annua targeted toward SARS-CoV-2 Main protease inhibition for COVID-19 treatment. Frontiers in Medicine, 9, 907583. https://doi.org/10.3389/fmed.2022.907583
  • Kashyap, P., Bhardwaj, V. K., Chauhan, M., Chauhan, V., Kumar, A., Purohit, R., Kumar, A., & Kumar, S. (2022). A ricin-based peptide BRIP from Hordeum vulgare inhibits Mpro of SARS-CoV-2. Scientific Reports, 12(1), 12802. https://doi.org/10.1038/s41598-022-15977-y
  • Kim, H., Hwang, Y. S., Kim, M., & Park, S. B. (2021). Recent advances in the development of covalent inhibitors. RSC Medicinal Chemistry, 12(7), 1037–1045. https://doi.org/10.1039/D1MD00068C
  • Lockbaum, G. J., Reyes, A. C., Lee, J. M., Tilvawala, R., Nalivaika, E. A., Ali, A., Kurt Yilmaz, N., Thompson, P. R., & Schiffer, C. A. (2021). Crystal structure of SARS-CoV-2 main protease in complex with the non-covalent inhibitor ML188. Viruses, 13(2), 174. https://doi.org/10.3390/v13020174
  • Luukkonen, S., van den Maagdenberg, H. W., Emmerich, M. T. M., & van Westen, G. J. P. (2023). Artificial intelligence in multi-objective drug design. Current Opinion in Structural Biology, 79, 102537. https://doi.org/10.1016/j.sbi.2023.102537
  • Ma, C., Sacco, M. D., Hurst, B., Townsend, J. A., Hu, Y., Szeto, T., Zhang, X., Tarbet, B., Marty, M. T., Chen, Y., & Wang, J. (2020). Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Research, 30(8), 678–692. https://doi.org/10.1038/s41422-020-0356-z
  • Maghsoudi, S., Taghavi Shahraki, B., Rameh, F., Nazarabi, M., Fatahi, Y., Akhavan, O., Rabiee, M., Mostafavi, E., Lima, E. C., Saeb, M. R., & Rabiee, N. (2022). A review on computer‐aided chemogenomics and drug repositioning for rational < scp > COVID</scp> ‐19 drug discovery. Chemical Biology & Drug Design, 100(5), 699–721. https://doi.org/10.1111/cbdd.14136
  • McCauley, N., & Ala, M. (1992). The use of expert systems in the healthcare industry. Information & Management, 22(4), 227–235. https://doi.org/10.1016/0378-7206(92)90025-B
  • Merz, K. M., Ringe, D., & Reynolds, C. H. (2010). Drug design: Structure- and ligand-based approaches. Cambridge University Press.
  • Miandad, K., Ullah, A., Bashir, K., Khan, S., Abideen, S. A., Shaker, B., Alharbi, M., Alshammari, A., Ali, M., Haleem, A., & Ahmad, S. (2022). Virtual Screening of artemisia annua phytochemicals as potential inhibitors of SARS-CoV-2 main protease enzyme. Molecules (Basel, Switzerland), 27(22), 8103. https://doi.org/10.3390/molecules27228103
  • Miles, J. C., & Walker, A. J. (2006). The potential application of artificial intelligence in transport. IEE Proceedings - Intelligent Transport Systems, 153(3), 183. https://doi.org/10.1049/ip-its:20060014
  • Na Takuathung, M., Sakuludomkan, W., Khatsri, R., Dukaew, N., Kraivisitkul, N., Ahmadmusa, B., Mahakkanukrauh, C., Wangthaweesap, K., Onin, J., Srichai, S., Buawangpong, N., & Koonrungsesomboon, N. (2022). Adverse effects of angiotensin-converting enzyme inhibitors in humans: A systematic review and meta-analysis of 378 randomized controlled trials. International Journal of Environmental Research and Public Health, 19(14), 8373. https://doi.org/10.3390/ijerph19148373
  • Narayanan, A., Narwal, M., Majowicz, S. A., Varricchio, C., Toner, S. A., Ballatore, C., Brancale, A., Murakami, K. S., & Jose, J. (2022). Identification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assay. Communications Biology, 5(1), 169. https://doi.org/10.1038/s42003-022-03090-9
  • Naveed, M., Ahmed, I., Khalid, N., & Mumtaz, A. S. (2014). Bioinformatics based structural characterization of glucose dehydrogenase (gdh) gene and growth promoting activity of Leclercia sp. QAU-66. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology]], 45(2), 603–611. https://doi.org/10.1590/S1517-83822014000200031
  • Naveed, M., Mubeen, S., Khan, S., Ahmed, I., Khalid, N., Suleria, H. A. R., Bano, A., & Mumtaz, A. S. (2014). Identification and characterization of rhizospheric microbial diversity by 16S ribosomal RNA gene sequencing. Brazilian Journal of Microbiology : [Publication of the Brazilian Society for Microbiology]], 45(3), 985–993. https://doi.org/10.1590/S1517-83822014000300031
  • Naveed, M., Tehreem, S., Mubeen, S., Nadeem, F., Zafar, F., & Irshad, M. (2016). In-silico analysis of non-synonymous-SNPs of STEAP2: To provoke the progression of prostate cancer. Open Life Sciences, 11(1), 402–416. https://doi.org/10.1515/biol-2016-0054
  • Niu, F., Recht, B., Ré, C., & Wright, S. (2011). HOGWILD!: A lock-free approach to parallelizing stochastic gradient descent. NIPS, 24, 693-701.
  • Njoroge, F. G., Chen, K. X., Shih, N.-Y., & Piwinski, J. J. (2008). Challenges in modern drug discovery: A case study of boceprevir, an HCV Protease inhibitor for the treatment of hepatitis C virus infection. Accounts of Chemical Research, 41(1), 50–59. https://doi.org/10.1021/ar700109k
  • Paciaroni, A., Libera, V., Ripanti, F., Orecchini, A., Petrillo, C., Francisci, D., Schiaroli, E., Sabbatini, S., Gidari, A., Bianconi, E., Macchiarulo, A., Hussain, R., Silvestrini, L., Moretti, P., Belhaj, N., Vercelli, M., Roque, Y., Mariani, P., Comez, L., & Spinozzi, F. (2023). Stabilization of the dimeric state of SARS-CoV-2 main protease by GC376 and nirmatrelvir. International Journal of Molecular Sciences, 24(7), 6062. https://doi.org/10.3390/ijms24076062
  • Parmar, M., Thumar, R., Patel, B., Athar, M., Jha, P. C., & Patel, D. (2023). Structural differences in 3C-like protease (Mpro) from SARS-CoV and SARS-CoV-2: Molecular insights revealed by molecular dynamics simulations. Structural Chemistry, 34(4), 1–18. https://doi.org/10.1007/s11224-022-02089-6
  • Pathade, V., Nene, S., Ratnam, S., Khatri, D. K., Raghuvanshi, R. S., Singh, S. B., & Srivastava, S. (2023). Emerging insights of peptide-based nanotherapeutics for effective management of rheumatoid arthritis. Life Sciences, 312, 121257. https://doi.org/10.1016/j.lfs.2022.121257
  • Paul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K., & Tekade, R. K. (2021). Artificial intelligence in drug discovery and development. Drug Discovery Today, 26(1), 80–93. https://doi.org/10.1016/j.drudis.2020.10.010
  • Pillaiyar, T., Manickam, M., Namasivayam, V., Hayashi, Y., & Jung, S.-H. (2016). An overview of Severe Acute Respiratory Syndrome–Coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. Journal of Medicinal Chemistry, 59(14), 6595–6628. https://doi.org/10.1021/acs.jmedchem.5b01461
  • Poduri, R., Joshi, G., & Jagadeesh, G. (2020). Drugs targeting various stages of the SARS-CoV-2 life cycle: Exploring promising drugs for the treatment of Covid-19. Cellular Signalling, 74, 109721. https://doi.org/10.1016/j.cellsig.2020.109721
  • Previti, S., Ettari, R., Calcaterra, E., Di Maro, S., Hammerschmidt, S. J., Müller, C., Ziebuhr, J., Schirmeister, T., Cosconati, S., & Zappalà, M. (2023). Structure-based lead optimization of peptide-based vinyl methyl ketones as SARS-CoV-2 main protease inhibitors. European Journal of Medicinal Chemistry, 247, 115021. https://doi.org/10.1016/j.ejmech.2022.115021
  • Priya, P., Basit, A., & Bandyopadhyay, P. (2023). A strategy to optimize the peptide-based inhibitors against different mutants of the spike protein of SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 41(13), 6191–6202. https://doi.org/10.1080/07391102.2022.2103587
  • Ren, F., Ding, X., Zheng, M., Korzinkin, M., Cai, X., Zhu, W., Mantsyzov, A., Aliper, A., Aladinskiy, V., Cao, Z., Kong, S., Long, X., Man Liu, B. H., Liu, Y., Naumov, V., Shneyderman, A., Ozerov, I. V., Wang, J., Pun, F. W., … Zhavoronkov, A. (2023). AlphaFold accelerates artificial intelligence powered drug discovery: Efficient discovery of a novel CDK20 small molecule inhibitor. Chemical Science, 14(6), 1443–1452. https://doi.org/10.1039/D2SC05709C
  • Rezaei, S., Sefidbakht, Y., & Uskoković, V. (2021). Tracking the pipeline: Immunoinformatics and the COVID-19 vaccine design. Briefings in Bioinformatics, 22(6), bbab241. https://doi.org/10.1093/bib/bbab241
  • Rossetti, G. G., Ossorio, M. A., Rempel, S., Kratzel, A., Dionellis, V. S., Barriot, S., Tropia, L., Gorgulla, C., Arthanari, H., Thiel, V., Mohr, P., Gamboni, R., & Halazonetis, T. D. (2022). Non-covalent SARS-CoV-2 Mpro inhibitors developed from in silico screen hits. Scientific Reports, 12(1), 2505. https://doi.org/10.1038/s41598-022-06306-4
  • Roth, G. J., Stanford, N., & Majerus, P. W. (1975). Acetylation of prostaglandin synthase by aspirin. Proceedings of the National Academy of Sciences of the United States of America, 72(8), 3073–3076. https://doi.org/10.1073/pnas.72.8.3073
  • Shiri, F., Pirhadi, S., & Ghasemi, J. B. (2016). Alignment independent 3D-QSAR, quantum calculations and molecular docking of Mer specific tyrosine kinase inhibitors as anticancer drugs. Saudi Pharmaceutical Journal: Spj: The Official Publication of the Saudi Pharmaceutical Society, 24(2), 197–212. https://doi.org/10.1016/j.jsps.2015.03.012
  • Singh, E., Khan, R. J., Jha, R. K., Amera, G. M., Jain, M., Singh, R. P., Muthukumaran, J., & Singh, A. K. (2020). A comprehensive review on promising anti-viral therapeutic candidates identified against main protease from SARS-CoV-2 through various computational methods. Journal of Genetic Engineering and Biotechnology, 18(1), 69. https://doi.org/10.1186/s43141-020-00085-z
  • Singh, J., Petter, R. C., Baillie, T. A., & Whitty, A. (2011). The resurgence of covalent drugs. Nature Reviews. Drug Discovery, 10(4), 307–317. https://doi.org/10.1038/nrd3410
  • Su, H., Yao, S., Zhao, W., Li, M., Liu, J., Shang, W., Xie, H., Ke, C., Gao, M., Yu, K., Liu, H., Shen, J., Tang, W., Zhang, L., Zuo, J., Jiang, H., Bai, F., Wu, Y., Ye, Y., & Xu, Y. (2020). Discovery of baicalin and baicalein as novel, natural product inhibitors of SARS-CoV-2 3CL protease < em > in vitro</em&gt. BioRxiv, 2020.04.13.038687. https://doi.org/10.1101/2020.04.13.038687
  • Sutanto, F., Konstantinidou, M., & Dömling, A. (2020). Covalent inhibitors: A rational approach to drug discovery. RSC Medicinal Chemistry, 11(8), 876–884. https://doi.org/10.1039/D0MD00154F
  • Tan, Y. Q., SoMe4Surgery working group Collaborators, Wang, Z., Yap, Q. V., Chan, Y. H., Ho, R. C., Hamid, A. R. A. H., Landaluce-Olavarria, A., Pellino, G., Gauhar, V., Chand, M., Wroclawski, M. L., Hameed, B. Z., Ling, S. K.-K., Sengupta, S., Gallo, G., Chiu, P. K.-F., Tanidir, Y., Tallada, M. P. V., Garcia, B. N., Colleoni, R., Abiddin, Z. A. Z., & Chiong, E. (2023). Psychological health of surgeons in a time of COVID-19. Annals of Surgery, 277(1), 50–56. https://doi.org/10.1097/SLA.0000000000004775
  • Tang, B., He, F., Liu, D., He, F., Wu, T., Fang, M., Niu, Z., Wu, Z., & Xu, D. (2022). AI-Aided design of novel targeted covalent inhibitors against SARS-CoV-2. Biomolecules, 12(6), 746. https://doi.org/10.3390/biom12060746
  • Thiel, V., Ivanov, K. A., Putics, Á., Hertzig, T., Schelle, B., Bayer, S., Weißbrich, B., Snijder, E. J., Rabenau, H., Doerr, H. W., Gorbalenya, A. E., & Ziebuhr, J. (2003). Mechanisms and enzymes involved in SARS coronavirus genome expression. The Journal of General Virology, 84(Pt 9), 2305–2315. https://doi.org/10.1099/vir.0.19424-0
  • Thümmler, L., Lindemann, M., Horn, P. A., Lenz, V., Konik, M., Gäckler, A., Boss, K., Theodoropoulos, F., Besa, V., Taube, C., Brenner, T., Witzke, O., Krawczyk, A., & Rohn, H. (2022). Early treatment with monoclonal antibodies or convalescent plasma reduces mortality in non-vaccinated COVID-19 high-risk patients. Viruses, 15(1), 119. https://doi.org/10.3390/v15010119
  • Ton, A., Gentile, F., Hsing, M., Ban, F., & Cherkasov, A. (2020). Rapid identification of potential inhibitors of SARS‐CoV‐2 main protease by deep docking of 1.3 billion compounds. Molecular Informatics, 39(8), e2000028. https://doi.org/10.1002/minf.202000028
  • Ullrich, S., & Nitsche, C. (2020). The SARS-CoV-2 main protease as drug target. Bioorganic & Medicinal Chemistry Letters, 30(17), 127377. https://doi.org/10.1016/j.bmcl.2020.127377
  • Vane, J. R., & Botting, R. M. (2003). The mechanism of action of aspirin. Thrombosis Research, 110(5-6), 255–258. https://doi.org/10.1016/S0049-3848(03)00379-7
  • Vora, L. K., Gholap, A. D., Jetha, K., Thakur, R. R. S., Solanki, H. K., & Chavda, V. P. (2023). Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics, 15(7), 1916. https://doi.org/10.3390/pharmaceutics15071916
  • Wang, F., Xu, Z., Ren, L., Tsang, S. Y., & Xue, H. (2008). GABAA receptor subtype selectivity underlying selective anxiolytic effect of baicalin. Neuropharmacology, 55(7), 1231–1237. https://doi.org/10.1016/j.neuropharm.2008.07.040
  • Wang, H., He, S., Deng, W., Zhang, Y., Li, G., Sun, J., Zhao, W., Guo, Y., Yin, Z., Li, D., & Shang, L. (2020). Comprehensive Insights into the Catalytic Mechanism of Middle East Respiratory Syndrome 3C-Like Protease and Severe Acute Respiratory Syndrome 3C-Like Protease. ACS Catalysis, 10(10), 5871–5890. https://doi.org/10.1021/acscatal.0c00110
  • Wang, L., Ding, J., Pan, L., Cao, D., Jiang, H., & Ding, X. (2019). Artificial intelligence facilitates drug design in the big data era. Chemometrics and Intelligent Laboratory Systems, 194, 103850. https://doi.org/10.1016/j.chemolab.2019.103850
  • Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. https://doi.org/10.1038/s41422-020-0282-0
  • Wei, P., Fan, K., Chen, H., Ma, L., Huang, C., Tan, L., Xi, D., Li, C., Liu, Y., Cao, A., & Lai, L. (2006). The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase. Biochemical and Biophysical Research Communications, 339(3), 865–872. https://doi.org/10.1016/j.bbrc.2005.11.102
  • Wilby, K. J., Partovi, N., Ford, J.-A E., Greanya, E. D., & Yoshida, E. M. (2012). Review of Boceprevir and Telaprevir for the Treatment of Chronic Hepatitis C. Canadian Journal of Gastroenterology = Journal Canadien de Gastroenterologie, 26(4), 205–210. https://doi.org/10.1155/2012/751057
  • Worldometer. (2023). Reported cases and deaths. https://www.worldometers.info/coronavirus/
  • Xia, S., Chan, J. F.-W., Wang, L., Jiao, F., Chik, K. K.-H., Chu, H., Lan, Q., Xu, W., Wang, Q., Wang, C., Yuen, K.-Y., Lu, L., & Jiang, S. (2022). Peptide-based pan-CoV fusion inhibitors maintain high potency against SARS-CoV-2 Omicron variant. Cell Research, 32(4), 404–406. https://doi.org/10.1038/s41422-022-00617-x
  • Xiao, T., Cui, M., Zheng, C., Zhang, P., Ren, S., Bao, J., Gao, D., Sun, R., Wang, M., Lin, J., Zhang, L., Li, M., Li, D., Zhou, H., & Yang, C. (2022). Both baicalein and gallocatechin gallate effectively inhibit SARS-CoV-2 replication by targeting mpro and sepsis in mice. Inflammation, 45(3), 1076–1088. https://doi.org/10.1007/s10753-021-01602-z
  • Xu, H., Faber, C., Uchiki, T., Racca, J., & Dealwis, C. (2006). Structures of eukaryotic ribonucleotide reductase I define gemcitabine diphosphate binding and subunit assembly. Proceedings of the National Academy of Sciences of the United States of America, 103(11), 4028–4033. https://doi.org/10.1073/pnas.0600440103
  • Xue, X., Yu, H., Yang, H., Xue, F., Wu, Z., Shen, W., Li, J., Zhou, Z., Ding, Y., Zhao, Q., Zhang, X. C., Liao, M., Bartlam, M., & Rao, Z. (2008). Structures of Two Coronavirus Main Proteases: Implications for Substrate Binding and Antiviral Drug Design. Journal of Virology, 82(5), 2515–2527. https://doi.org/10.1128/JVI.02114-07
  • Yamamoto, N., Matsuyama, S., Hoshino, T., & Yamamoto, N. (2020). Nelfinavir inhibits replication of severe acute respiratory syndrome coronavirus 2 in vitro. BioRxiv, 2020.04.06.026476. https://doi.org/10.1101/2020.04.06.026476
  • Yang, H., Xie, W., Xue, X., Yang, K., Ma, J., Liang, W., Zhao, Q., Zhou, Z., Pei, D., Ziebuhr, J., Hilgenfeld, R., Yuen, K. Y., Wong, L., Gao, G., Chen, S., Chen, Z., Ma, D., Bartlam, M., & Rao, Z. (2005). Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biology, 3(10), e324. https://doi.org/10.1371/journal.pbio.0030324
  • Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G. F., Anand, K., Bartlam, M., Hilgenfeld, R., & Rao, Z. (2003). The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13190–13195. https://doi.org/10.1073/pnas.1835675100
  • Zhou, X., Zhong, F., Lin, C., Hu, X., Zhang, Y., Xiong, B., Yin, X., Fu, J., He, W., Duan, J., Fu, Y., Zhou, H., McCormick, P. J., Wang, Q., Li, J., & Zhang, J. (2021). Structure of SARS-CoV-2 main protease in the apo state. Science China. Life Sciences, 64(4), 656–659. https://doi.org/10.1007/s11427-020-1791-3
  • Zhou, Y., Wang, F., Tang, J., Nussinov, R., & Cheng, F. (2020). Artificial intelligence in COVID-19 drug repurposing. The Lancet Digital Health, 2(12), e667–e676. https://doi.org/10.1016/S2589-7500(20)30192-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.