162
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chemical exploration of different extracts from Phytolacca americana leaves and their potential utilization for global health problems: ın silico and network pharmacology validation

, , , , ORCID Icon, , , , , , & ORCID Icon show all
Received 09 Oct 2023, Accepted 14 Jan 2024, Published online: 30 Jan 2024

References

  • Abdelghffar, E. A., El-Nashar, H. A., Al-Mohammadi, A. G., & Eldahshan, O. A. (2021). Orange fruit (Citrus sinensis) peel extract attenuates chemotherapy-induced toxicity in male rats. Food & Function, 12(19), 9443–9455. https://doi.org/10.1039/d1fo01905h
  • Adamu, R. M., Majumdhar, R. S., & Uba, A. I. (2021). Structure-based Virtual screening of natural compounds as potential anti-allergy agents against cytokine alarmins (TSLP and IL-33). Letters in Drug Design & Discovery, 18(9), 932–942. https://doi.org/10.2174/1570180818666210521214833
  • Agarwal, P., & Gupta, R. (2016). Alpha-amylase inhibition can treat diabetes mellitus. Research and Reviews: Journal of Medical and Health Sciences, 5, 1–8.
  • Aly, S. H., Elissawy, A. M., Eldahshan, O. A., Elshanawany, M. A., Efferth, T., & Singab, A. N. B. (2019). The pharmacology of the genus Sophora (Fabaceae): An updated review. Phytomedicine: İnternational Journal of Phytotherapy and Phytopharmacology, 64, 153070. https://doi.org/10.1016/j.phymed.2019.153070
  • Al-Yousef, H. M., Fantoukh, O. I., El-Sayed, M. A., Amina, M., Adel, R., Hassan, W. H. B., & Abdelaziz, S. (2021). Metabolic profiling and biological activities of the aerial parts of Micromeria imbricata Forssk. growing in Saudi Arabia. Saudi Journal of Biological Sciences, 28(10), 5609–5616. https://doi.org/10.1016/j.sjbs.2021.05.077
  • Anokwuru, C., Anyasor, G., Ajibaye, O., Fakoya, O., & Okebugwu, P. (2011). Effect of extraction solvents on phenolic, flavonoid and antioxidant activities of three nigerian medicinal plants. Nature and Science, 9(7), 53–61.
  • Bailly, C. (2021). Medicinal properties and anti-inflammatory components of Phytolacca (Shanglu). Digital Chinese Medicine, 4(3), 159–169. https://doi.org/10.1016/j.dcmed.2021.09.001
  • Bendjedid, S., Lekmine, S., Tadjine, A., Djelloul, R., & Bensouici, C. (2021). Analysis of phytochemical constituents, antibacterial, antioxidant, photoprotective activities and cytotoxic effect of leaves extracts and fractions of Aloe vera. Biocatalysis and Agricultural Biotechnology, 33, 101991. https://doi.org/10.1016/j.bcab.2021.101991
  • Benslama, O., Lekmine, S., & Mansouri, N. (2023). Phytochemical constituents of Astragalus monspessulanus and integrative analysis for its antioxidant, photoprotective, and antityrosinase activities: Experimental and computational investigation. European Journal of Integrative Medicine, 60, 102247. https://doi.org/10.1016/j.eujim.2023.102247
  • Boo, H.-O., Park, J.-H., Woo, S.-H., & Park, H.-Y. (2015). antimicrobial effect, antioxidant and tyrosinase inhibitory activity of the extract from different parts of Phytolacca americana L. The Korean Journal of Crop Science, 60(3), 366–373. https://doi.org/10.7740/kjcs.2015.60.3.366
  • Borrás-Linares, I., Herranz-López, M., Barrajón-Catalán, E., Arráez-Román, D., González-Álvarez, I., Bermejo, M., Fernández Gutiérrez, A., Micol, V., & Segura-Carretero, A. (2015). Permeability study of polyphenols derived from a phenolic-enriched Hibiscus sabdariffa extract by UHPLC-ESI-UHR-Qq-TOF-MS. International Journal of Molecular Sciences, 16(8), 18396–18411. https://doi.org/10.3390/ijms160818396
  • Bouyahya, A., El Menyiy, N., Oumeslakht, L., El Allam, A., Balahbib, A., Rauf, A., Muhammad, N., Kuznetsova, E., Derkho, M., Thiruvengadam, M., Shariati, M. A., & El Omari, N. (2021). Preclinical and clinical antioxidant effects of natural compounds against oxidative stress-induced epigenetic instability in tumor cells. Antioxidants, 10(10), 1553. https://doi.org/10.3390/antiox10101553
  • Bouyahya, A., El Omari, N., Elmenyiy, N., Guaouguaou, F.-E., Balahbib, A., Belmehdi, O., Salhi, N., Imtara, H., Mrabti, H. N., El-Shazly, M., & Bakri, Y. (2021). Moroccan antidiabetic medicinal plants: Ethnobotanical studies, phytochemical bioactive compounds, preclinical investigations, toxicological validations and clinical evidences; challenges, guidance and perspectives for future management of diabetes worldwide. Trends in Food Science & Technology, 115, 147–254. https://doi.org/10.1016/j.tifs.2021.03.032
  • Bylka, W., & Matławska, I. (2001). Flawonoids and free phenolic acids from Phytolacca americana L. leaves. Acta Poloniae Pharmaceutica, 58(1), 69–72.
  • Chen, S., Oh, S. R., Phung, S., Hur, G., Ye, J. J., Kwok, S. L., Shrode, G. E., Belury, M., Adams, L. S., & Williams, D. (2006). Anti-aromatase activity of phytochemicals in white button mushrooms (Agaricus bisporus). Cancer Research, 66(24), 12026–12034. eng. https://doi.org/10.1158/0008-5472.CAN-06-2206
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Di Sotto, A., Checconi, P., Celestino, I., Locatelli, M., Carissimi, S., De Angelis, M., Rossi, V., Limongi, D., Toniolo, C., Martinoli, L., Di Giacomo, S., Palamara, A. T., & Nencioni, L. (2018). Antiviral and antioxidant activity of a hydroalcoholic extract from Humulus lupulus L. Oxidative Medicine and Cellular Longevity, 2018, 5919237–5919214. https://doi.org/10.1155/2018/5919237
  • Do, Q. D., Angkawijaya, A. E., Tran-Nguyen, P. L., Huynh, L. H., Soetaredjo, F. E., Ismadji, S., & Ju, Y.-H. (2014). Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22(3), 296–302. https://doi.org/10.1016/j.jfda.2013.11.001
  • El-Nashar, H. A. S., Mostafa, N. M., El-Shazly, M., & Eldahshan, O. A. (2021). The role of plant-derived compounds in managing diabetes mellitus: A review of literature from 2014 to 2019. Current Medicinal Chemistry, 28(23), 4694–4730.
  • Ferreira, J. P. S., Albuquerque, H. M. T., Cardoso, S. M., Silva, A. M. S., & Silva, V. L. M. (2021). Dual-target compounds for Alzheimer’s disease: Natural and synthetic AChE and BACE-1 dual-inhibitors and their structure-activity relationship (SAR). European Journal of Medicinal Chemistry, 221, 113492. https://doi.org/10.1016/j.ejmech.2021.113492
  • Frankel, E. N., & Meyer, A. S. (2000). The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. Journal of the Science of Food and Agriculture, 80(13), 1925–1941. https://doi.org/10.1002/1097-0010(200010)80:13<1925::AID-JSFA714>3.0.CO;2-4
  • García-Gómez, C., Pérez, R. A., Albero, B., Obrador, A., Almendros, P., & Fernández, M. D. (2023). Interaction of ZnO nanoparticles with metribuzin in a soil-plant System: Ecotoxicological effects and changes in the distribution pattern of Zn and metribuzin. Agronomy, 13(8), 2004. https://doi.org/10.3390/agronomy13082004
  • Gerlits, O., Ho, K.-Y., Cheng, X., Blumenthal, D., Taylor, P., Kovalevsky, A., & Radić, Z. (2019). A new crystal form of human acetylcholinesterase for exploratory room-temperature crystallography studies. Chemico-Biological İnteractions, 309, 108698. https://doi.org/10.1016/j.cbi.2019.06.011
  • Hamed, Y., Abdin, M., Akhtar, H., Chen, D., Wan, P., Chen, G., & Zeng, X. (2019). Extraction, purification by macrospores resin and in vitro antioxidant activity of flavonoids from Moringa oliefera leaves. South African Journal of Botany, 124, 270–279. https://doi.org/10.1016/j.sajb.2019.05.006
  • Han, H.-Y., Han, K.-H., Ahn, J.-H., Park, S.-M., Kim, S., Lee, B.-S., Min, B.-S., Yoon, S., Oh, J.-H., & Kim, T.-W. (2020). Subchronic toxicity assessment of Phytolacca americana L. (Phytolaccaceae) in F344 rats. Natural Product Communications, 15(7), 1934578X2094165. 1934578X20941656. https://doi.org/10.1177/1934578X20941656
  • Houghton, P. J., & Howes, M. J. (2005). Natural products and derivatives affecting neurotransmission relevant to Alzheimer’s and Parkinson’s disease. Neuro-Signals, 14(1-2), 6–22. eng. https://doi.org/10.1159/000085382
  • Ielo, L., Deri, B., Germanò, M. P., Vittorio, S., Mirabile, S., Gitto, R., Rapisarda, A., Ronsisvalle, S., Floris, S., Pazy, Y., Fais, A., Fishman, A., & De Luca, L. (2019). Exploiting the 1-(4-fluorobenzyl)piperazine fragment for the development of novel tyrosinase inhibitors as anti-melanogenic agents: Design, synthesis, structural insights and biological profile. European Journal of Medicinal Chemistry, 178, 380–389. https://doi.org/10.1016/j.ejmech.2019.06.019
  • Iwashina, T., & Kitajima, J. (2009). Flavonoids from the leaves of betalain-containing species, Phytolacca americana (Phytolaccaceae). Bulletin of the National Museum of Nature and Science, Series B, 35, 99–104.
  • Jaiswal, R., Jayasinghe, L., & Kuhnert, N. (2012). Identification and characterization of proanthocyanidins of 16 members of the Rhododendron genus (Ericaceae) by tandem LC–MS. Journal of Mass Spectrometry: JMS, 47(4), 502–515. https://doi.org/10.1002/jms.2954
  • Kamal-Eldin, A., & Appelqvist, L. A. (1996). The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids, 31(7), 671–701. eng. https://doi.org/10.1007/BF02522884
  • Karade, S. S., Hill, M. L., Kiappes, J. L., Manne, R., Aakula, B., Zitzmann, N., Warfield, K. L., Treston, A. M., & Mariuzza, R. A. (2021). N-substituted valiolamine derivatives as potent inhibitors of endoplasmic reticulum α-glucosidases I and II with antiviral activity. Journal of Medicinal Chemistry, 64(24), 18010–18024. https://doi.org/10.1021/acs.jmedchem.1c01377
  • Khattabi, L., Boudiar, T., Bouhenna, M. M., Chettoum, A., Chebrouk, F., Chader, H., Lozano-Sánchez, J., Segura-Carretero, A., Nieto, G., & Akkal, S. (2022). RP-HPLC-ESI-QTOF-MS qualitative profiling, antioxidant, anti-enzymatic, anti-inflammatory, and non-cytotoxic properties of Ephedra alata monjauzeana. Foods (Basel, Switzerland), 11(2), 145. https://doi.org/10.3390/foods11020145
  • Kikuzaki, H., Hisamoto, M., Hirose, K., Akiyama, K., & Taniguchi, H. (2002). Antioxidant properties of ferulic acid and its related compounds. Journal of Agricultural and Food Chemistry, 50(7), 2161–2168. https://doi.org/10.1021/jf011348w
  • Kurumbail, R. G., Stevens, A. M., Gierse, J. K., McDonald, J. J., Stegeman, R. A., Pak, J. Y., Gildehaus, D., Miyashiro, J. M., Penning, T. D., Seibert, K., Isakson, P. C., & Stallings, W. C. (1996). Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature, 384(6610), 644–648. https://doi.org/10.1038/384644a0
  • Lang, Y., Gao, N., Zang, Z., Meng, X., Lin, Y., Yang, S., Yang, Y., Jin, Z., & Li, B. (2024). Classification and antioxidant assays of polyphenols: A review. Journal of Future Foods, 4(3), 193–204. https://doi.org/10.1016/j.jfutfo.2023.07.002
  • Lankatillake, C., Huynh, T., & Dias, D. A. (2019). Understanding glycaemic control and current approaches for screening antidiabetic natural products from evidence-based medicinal plants. Plant Methods, 15(1), 105. https://doi.org/10.1186/s13007-019-0487-8
  • Lans, C. (2019). Do recent research studies validate the medicinal plants used in British Columbia, Canada for pet diseases and wild animals taken into temporary care? Journal of Ethnopharmacology, 236, 366–392. https://doi.org/10.1016/j.jep.2019.02.030
  • Lee, S. Y., & Shaari, K. (2022). LC–MS metabolomics analysis of Stevia rebaudiana Bertoni leaves cultivated in Malaysia in relation to different developmental stages. Phytochemical Analysis: PCA, 33(2), 249–261. https://doi.org/10.1002/pca.3084
  • Lekmine, S., Boussekine, S., Akkal, S., Martín-García, A. I., Boumegoura, A., Kadi, K., Djeghim, H., Mekersi, N., Bendjedid, S., Bensouici, C., & Nieto, G. (2021). Investigation of photoprotective, anti-inflammatory, antioxidant capacities and LC–ESI–MS phenolic profile of Astragalus gombiformis Pomel. Foods (Basel, Switzerland), 10(8), 1937. https://doi.org/10.3390/foods10081937
  • Liang, Y., Yan, G. Y., Wu, J. L., Zong, X., Liu, Z., Zhou, H., Liu, L., & Li, N. (2018). Qualitative and quantitative analysis of lipo‐alkaloids and fatty acids in Aconitum carmichaelii using LC–MS and GC–MS. Phytochemical Analysis: PCA, 29(4), 398–405. https://doi.org/10.1002/pca.2760
  • Mamadalieva, N. Z., Youssef, F. S., Hussain, H., Zengin, G., Mollica, A., Al Musayeib, N. M., Ashour, M. L., Westermann, B., & Wessjohann, L. A. (2021). Validation of the antioxidant and enzyme inhibitory potential of selected triterpenes using in vitro and in silico studies, and the evaluation of their ADMET properties. Molecules, 26(21), 6331. https://doi.org/10.3390/molecules26216331
  • Maurus, R., Begum, A., Williams, L. K., Fredriksen, J. R., Zhang, R., Withers, S. G., & Brayer, G. D. (2008). Alternative catalytic anions differentially modulate human α-amylase activity and specificity. Biochemistry, 47(11), 3332–3344. https://doi.org/10.1021/bi701652t
  • Mikulic-Petkovsek, M., Veberic, R., Hudina, M., & Misic, E. (2022). HPLC-DAD-MS identification and quantification of phenolic components in Japanese Knotweed and American Pokeweed extracts and their phytotoxic effect on seed germination. Plants, 11(22), 3053. https://doi.org/10.3390/plants11223053
  • Mishra, A. K., Mishra, A., Kehri, H. K., Sharma, B., & Pandey, A. K. (2009). Inhibitory activity of Indian spice plant Cinnamomum zeylanicum extracts against Alternaria solani and Curvularia lunata, the pathogenic dematiaceous moulds. Annals of Clinical Microbiology and Antimicrobials, 8(1), 9. eng. https://doi.org/10.1186/1476-0711-8-9
  • Molina-Calle, M., Priego-Capote, F., & de Castro, M. D. L. (2017). Characterization of Stevia leaves by LC–QTOF MS/MS analysis of polar and non-polar extracts. Food Chemistry, 219, 329–338. https://doi.org/10.1016/j.foodchem.2016.09.148
  • Momenah, M. A., Almutairi, L. A., Alqhtani, H. A., Al-Saeed, F. A., Syaad, K. M. A., Alhag, S. K., Al-Qahtani, M. A., Hakami, Z. H., Mallick, J., & Ahmed, A. E. (2023). Esculentoside a inhibits proliferation, colony formation, migration, and invasion of human colorectal cancer cells. Evidence-Based Complementary and Alternative Medicine, 2023, 1–5. https://doi.org/10.1155/2023/7530725
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mostafa, N. M., Ashour, M. L., Eldahshan, O. A., & Singab, A. N. (2016). Cytotoxic activity and molecular docking of a novel biflavonoid isolated from Jacaranda acutifolia (Bignoniaceae). Natural Product Research, 30(18), 2093–2100. https://doi.org/10.1080/14786419.2015.1114938
  • Nebrigić, V., Cvetanović, A., Zengin, G., Terzić, M., Mašković, P., & Radojković, M. (2023). Effects of extraction and drying techniques on the chemical composition and biological activities of Helichrysum italicum. Process Biochemistry, 130, 96–104. https://doi.org/10.1016/j.procbio.2023.04.002
  • Nedić, N., Nešović, M., Radišić, P., Gašić, U., Baošić, R., Joksimović, K., Pezo, L., Tešić, Ž., & Vovk, I. (2022). Polyphenolic and chemical profiles of honey from the Tara Mountain in Serbia. Frontiers in Nutrition, 9, 941463. https://doi.org/10.3389/fnut.2022.941463
  • Newall, C. A., Anderson, L. A., & Phillipson, J. D. (1996). Herbal medicines. A guide for health-care professionals. The pharmaceutical press. Effect of extraction solvent on total polyphenol content, total flavonoid content, and antioxidant activity of soursop seeds (Annona muricata L.). IOP Conference Series: Materials Science and Engineering. 2020: IOP Publishing.
  • Nguyen, V., Nguyen, M., Tran, Q., Thinh, P., Bui, L., Le, T., Le, V., & Linh, H. (2020). Effect of extraction solvent on total polyphenol content, total flavonoid content, and antioxidant activity of soursop seeds (Annona muricata L.). IOP Conference Series: Materials Science and Engineering, 736(2), 022063. https://doi.org/10.1088/1757-899X/736/2/022063
  • Otify, A., George, C., Elsayed, A., & Farag, M. A. (2015). Mechanistic evidence of Passiflora edulis (Passifloraceae) anxiolytic activity in relation to its metabolite fingerprint as revealed via LC-MS and chemometrics. Food & Function, 6(12), 3807–3817. https://doi.org/10.1039/c5fo00875a
  • Paul, T., Pathak, K., Saikia, R., Gogoi, U., Jyoti Sahariah, J., & Das, A. (2024). The role of medicinal plants in the treatment and management of type 2 diabetes. Current Traditional Medicine, 10(2), 83–96. https://doi.org/10.2174/2215083809666230223164613
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera?A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Rahaman, M. M., Hossain, R., Herrera-Bravo, J., Islam, M. T., Atolani, O., Adeyemi, O. S., Owolodun, O. A., Kambizi, L., Daştan, S. D., Calina, D., & Sharifi-Rad, J. (2023). Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update. Food Science & Nutrition, 11(4), 1657–1670. https://doi.org/10.1002/fsn3.3217
  • Rosenberry, T., Brazzolotto, X., Macdonald, I., Wandhammer, M., Trovaslet-Leroy, M., Darvesh, S., & Nachon, F. (2017). Comparison of the binding of reversible inhibitors to human butyrylcholinesterase and acetylcholinesterase: A crystallographic, kinetic and calorimetric study. Molecules (Basel, Switzerland), 22(12), 2098. https://doi.org/10.3390/molecules22122098
  • Saini, R. K., Prasad, P., Lokesh, V., Shang, X., Shin, J., Keum, Y.-S., & Lee, J.-H. (2022). Carotenoids: Dietary sources, extraction, encapsulation, bioavailability, and health benefits—A review of recent advancements. Antioxidants, 11(4), 795. https://doi.org/10.3390/antiox11040795
  • Salama, R. M., Darwish, S. F., El Shaffei, I., Elmongy, N. F., Fahmy, N. M., Afifi, M. S., & Abdel-Latif, G. A. (2022). Morus macroura Miq. Fruit extract protects against acetic acid-induced ulcerative colitis in rats: Novel mechanistic insights on its impact on miRNA-223 and on the TNFα/NFκB/NLRP3 inflammatory axis. Food and Chemical Toxicology, 165, 113146. https://doi.org/10.1016/j.fct.2022.113146
  • Saleri, F. D., Chen, G., Li, X., & Guo, M. (2017). Comparative analysis of saponins from different Phytolaccaceae species and their antiproliferative activities. Molecules (Basel, Switzerland), 22(7), 1077. https://doi.org/10.3390/molecules22071077
  • Sinan, K. I., Yagi, S., Llorent-Martínez, E. J., Ruiz-Medina, A., Gordo-Moreno, A. I., Stefanucci, A., Mollica, A., Bene, K., & Zengin, G. (2023). Understanding the chemical composition and biological activities of different extracts of Secamone afzelii leaves: A potential source of bioactive compounds for the food industry. Molecules, 28(9), 3678. https://doi.org/10.3390/molecules28093678
  • Singh, A. P., Wilson, T., Luthria, D., Freeman, M. R., Scott, R. M., Bilenker, D., Shah, S., Somasundaram, S., & Vorsa, N. (2011). LC-MS–MS characterisation of curry leaf flavonols and antioxidant activity. Food Chemistry, 127(1), 80–85. https://doi.org/10.1016/j.foodchem.2010.12.091
  • Stefanucci, A., Dimmito, M. P., Tenore, G., Pieretti, S., Minosi, P., Zengin, G., Sturaro, C., Calò, G., Novellino, E., Cichelli, A., & Mollica, A. (2021). Plant-derived peptides rubiscolin-6, soymorphin-6 and their C-terminal amide derivatives: Pharmacokinetic properties and biological activity. Pharmacological characterization of new compounds and herbal derivatives for pain and inflammation treatment. Journal of Functional Foods, 73, 71. https://doi.org/10.1016/j.jff.2020.104154
  • Stefanucci, A., Zengin, G., Locatelli, M., Macedonio, G., Wang, C.-K., Novellino, E., Mahomoodally, M. F., & Mollica, A. (2018). Impact of different geographical locations on varying profile of bioactives and associated functionalities of caper (Capparis spinosa L.). Food and Chemical Toxicology, 118, 181–189. https://doi.org/10.1016/j.fct.2018.05.003
  • Suga, Y., Maruyama, Y., Kawanishi, S., & Shoji, J. (1978). Studies on the constituents of phytolaccaceous plants. I. On the structures of phytolaccasaponin B, E and G from the roots of Phytolacca americana L. Chemical and Pharmaceutical Bulletin, 26(2), 520–525. https://doi.org/10.1248/cpb.26.520
  • Sun, G., Yang, W., Zhang, Y., & Zhao, M. (2017). Esculentoside A ameliorates cecal ligation and puncture-induced acute kidney injury in rats. Experimental Animals, 66(4), 303–312. https://doi.org/10.1538/expanim.16-0102
  • Sut, S., Dall’Acqua, S., Zengin, G., Senkardes, I., Uba, A. I., Bouyahya, A., & Aktumsek, A. (2023). Novel signposts on the road from natural sources to pharmaceutical applications: A combinative approach between LC-DAD-MS and offline LC-NMR for the biochemical characterization of two Hypericum Species (H. montbretii and H. origanifolium). Plants, 12(3), 648. https://doi.org/10.3390/plants12030648
  • Tang, W., & Eisenbrand, G. (2013). Chinese drugs of plant origin: Chemistry, pharmacology, and use in traditional and modern medicine. Springer Science & Business Media.
  • Trunjaruen, A., Luecha, P., & Taratima, W. (2022). Micropropagation of pokeweed (Phytolacca americana L.) and comparison of phenolic, flavonoid content, and antioxidant activity between pokeweed callus and other parts. PeerJ. 10, e12892. https://doi.org/10.7717/peerj.12892
  • Tucci, S., Boyland, E., & Halford, J. (2010). Diabetes, metabolic syndrome and obesity: Targets and therapy dovepress The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: A review of current and emerging therapeutic agents. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 3, 125–143. https://doi.org/10.2147/DMSO.S7005
  • Uba, A. I., Zengin, G., Montesano, D., Cakilcioglu, U., Selvi, S., Ulusan, M. D., Caprioli, G., Sagratini, G., Angeloni, S., Jugreet, S., Hasan, M. M., & Mahoomodally, M. F. (2022). Antioxidant and enzyme inhibitory properties, and HPLC–MS/MS profiles of different extracts of Arabis carduchorum Boiss.: an endemic plant to Turkey. Applied Sciences, 12(13), 6561. https://doi.org/10.3390/app12136561
  • Uesugi, D., Hamada, H., Shimoda, K., Kubota, N., Ozaki, S. I., & Nagatani, N. (2017). Synthesis, oxygen radical absorbance capacity, and tyrosinase inhibitory activity of glycosides of resveratrol, pterostilbene, and pinostilbene. Bioscience, Biotechnology, and Biochemistry, 81(2), 226–230. https://doi.org/10.1080/09168451.2016.1240606
  • Umar, T., Shalini, S., Raza, M. K., Gusain, S., Kumar, J., Seth, P., Tiwari, M., & Hoda, N. (2019). A multifunctional therapeutic approach: Synthesis, biological evaluation, crystal structure and molecular docking of diversified 1H-pyrazolo[3,4-b]pyridine derivatives against Alzheimer’s disease. European Journal of Medicinal Chemistry, 175, 2–19. eng. https://doi.org/10.1016/j.ejmech.2019.04.038
  • Upadhyay, T. K., Das, S., Mathur, M., Alam, M., Bhardwaj, R., Joshi, N., & Sharangi, A. B. (2024). Medicinal plants and their bioactive components with antidiabetic potentials. Antidiabetic Medicinal Plants, 1, 327–364.
  • Uysal, S., Zengin, G., Locatelli, M., Bahadori, M. B., Mocan, A., Bellagamba, G., De Luca, E., Mollica, A., & Aktumsek, A. (2017). Cytotoxic and enzyme inhibitory potential of two Potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical composition. Frontiers in Pharmacology, 8, 290. https://doi.org/10.3389/fphar.2017.00290
  • Yadang, F. S. A., Nguezeye, Y., Kom, C. W., Betote, P. H. D., Mamat, A., Tchokouaha, L. R. Y., Taiwé, G. S., Agbor, G. A., & Bum, E. N. (2020). Sscopolamine-induced memory impairment in mice: Neuroprotective effects of Carissa edulis (Forssk.) Valh (Apocynaceae) aqueous extract. International Journal of Alzheimer’s Disease, 2020, 6372059. https://doi.org/10.1155/2020/6372059
  • Yılmaz, M. A., Taslimi, P., Kılıç, Ö., Gülçin, İ., Dey, A., & Bursal, E. (2023). Unravelling the phenolic compound reserves, antioxidant and enzyme inhibitory activities of an endemic plant species, Achillea pseudoaleppica. Journal of Biomolecular Structure & Dynamics, 41(2), 445–456. https://doi.org/10.1080/07391102.2021.2007792
  • Younis, M. M., Ayoub, I. M., Mostafa, N. M., El Hassab, M. A., Eldehna, W. M., Al-Rashood, S. T., & Eldahshan, O. A. (2022). GC/MS profiling, anti-collagenase, anti-elastase, anti-tyrosinase and anti-hyaluronidase activities of a Stenocarpus sinuatus leaves extract. Plants (Basel, Switzerland), 11(7), 1-19. https://doi.org/10.3390/plants11070918
  • Zengin, G., Fahmy, N. M., Sinan, K. I., Uba, A. I., Bouyahya, A., Lorenzo, J. M., Yildiztugay, E., Eldahshan, O. A., & Fayez, S. (2022). Differential metabolomic fingerprinting of the crude extracts of three Asteraceae species with assessment of their in vitro antioxidant and enzyme-inhibitory activities supported by in silico investigations. Processes, 10(10), 1911. https://doi.org/10.3390/pr10101911
  • Zengin, G., Menghini, L., Malatesta, L., De Luca, E., Bellagamba, G., Uysal, S., Aktumsek, A., & Locatelli, M. (2016). Comparative study of biological activities and multicomponent pattern of two wild Turkish species: Asphodeline anatolica and Potentilla speciosa. Journal of Enzyme İnhibition and Medicinal Chemistry, 31(sup1), 203–208. https://doi.org/10.1080/14756366.2016.1178247
  • Zengin, G., Uba, A. I., Ocal, M., Sharifi-Rad, M., Caprioli, G., Angeloni, S., Altunoglu, Y. C., Baloglu, M. C., & Yıldıztugay, E. (2022). Integration of in vitro and in silico approaches to assess three Astragalus species from Turkey flora: A novel spotlight from lab bench to functional applications. Food Bioscience, 49, 101858. https://doi.org/10.1016/j.fbio.2022.101858
  • Zhang, F., Wang, X., Qiu, X., Wang, J., Fang, H., Wang, Z., Sun, Y., & Xia, Z. (2014). The protective effect of Esculentoside A on experimental acute liver injury in mice. PLoS One, 9(11), e113107. https://doi.org/10.1371/journal.pone.0113107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.