220
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Computational exploration of FOXM1 inhibitors for glioblastoma: an integrated virtual screening and molecular dynamics simulation study

, , , , , , & show all
Received 03 Oct 2023, Accepted 14 Jan 2024, Published online: 02 Feb 2024

References

  • Abdalla Ali, A., Mhamad, S. A., Hasan, A. H., Ahmad, I., Abdullah, S. A., Jamil, S., Patel, H., Murugesan, S., & Jamalis, J. (2023). Synthesis, biological evaluation and molecular modeling studies of modulated benzyloxychalcones as potential acetylcholinesterase inhibitors. Journal of Biomolecular Structure & Dynamics, 1–12. https://doi.org/10.1080/07391102.2023.2220032
  • Abou-Gazar, H., Bedir, E., Takamatsu, S., Ferreira, D., & Khan, I. A. (2004). Antioxidant lignans from Larrea tridentata. Phytochemistry, 65(17), 2499–2505. https://doi.org/10.1016/j.phytochem.2004.07.009
  • Ahmad Ansari, I., Debnath, B., Kar, S., Patel, H. M., Debnath, S., Zaki, M. E., & Pal, P. (2023). Identification of potential edible spices as EGFR and EGFR mutant T790M/L858R inhibitors by structure-based virtual screening and molecular dynamics. Journal of Biomolecular Structure & Dynamics, 1–18. https://doi.org/10.1080/07391102.2023.2223661
  • Ahmed Atto Al-Shuaeeb, R., Abd El-Mageed, H., Ahmed, S., Mohamed, H. S., Hamza, Z. S., Rafi, M. O., Ahmad, I., & Patel, H. (2023). In silico investigation and potential therapeutic approaches of isoquinoline alkaloids for neurodegenerative diseases: Computer-aided drug design perspective. Journal of Biomolecular Structure & Dynamics, 41(23), 14484–14496. https://doi.org/10.1080/07391102.2023.2212778
  • Alves, A. L. V., Gomes, I. N. F., Carloni, A. C., Rosa, M. N., da Silva, L. S., Evangelista, A. F., Reis, R. M., & Silva, V. A. O. (2021). Role of glioblastoma stem cells in cancer therapeutic resistance: A perspective on antineoplastic agents from natural sources and chemical derivatives. Stem Cell Research & Therapy, 12(1), 206. https://doi.org/10.1186/s13287-021-02231-x
  • Ayipo, Y. O., Yahaya, S. N., Babamale, H. F., Ahmad, I., Patel, H., & Mordi, M. N. (2021). β-Carboline alkaloids induce structural plasticity and inhibition of SARS-CoV-2 nsp3 macrodomain more potently than remdesivir metabolite GS-441524: Computational approach. Turkish Journal of Biology = Turk Biyoloji Dergisi, 45(4), 503–517. https://doi.org/10.3906/biy-2106-64
  • Bhowmick, S., Saha, A., AlFaris, N. A., ALTamimi, J. Z., ALOthman, Z. A., Aldayel, T. S., Wabaidur, S. M., & Islam, M. A. (2021). Structure-based identification of galectin-1 potential modulators in dietary food polyphenols: A pharmacoinformatics approach. Molecular Diversity, 26(3), 1697–1714. https://doi.org/10.1007/s11030-021-10297-1
  • Bhowmick, S., Saha, A., Osman, S. M., Alasmary, F. A., Almutairi, T. M., & Islam, M. A. (2021). Structure-based identification of SARS-CoV-2 main protease inhibitors from anti-viral specific chemical libraries: An exhaustive computational screening approach. Molecular Diversity, 25(3), 1979–1997. https://doi.org/10.1007/s11030-021-10214-6
  • Carlsson, S. K., Brothers, S. P., & Wahlestedt, C. (2014). Emerging treatment strategies for glioblastoma multiforme. EMBO Molecular Medicine, 6(11), 1359–1370. https://doi.org/10.15252/emmm.201302627
  • Das, B., Dash, S. R., Patel, H., Sinha, S., Bhal, S., Paul, S., Das, C., Pradhan, R., Ahmed, I., Goutam, K., & Kundu, C. N. (2023). Quinacrine inhibits HIF-1α/VEGF-A mediated angiogenesis by disrupting the interaction between cMET and ABCG2 in patient-derived breast cancer stem cells. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 117, 154914. https://doi.org/10.1016/j.phymed.2023.154914
  • Dreiseitel, A., Schreier, P., Oehme, A., Locher, S., Rogler, G., Piberger, H., Hajak, G., & Sand, P. G. (2008). Inhibition of proteasome activity by anthocyanins and anthocyanidins. Biochemical and Biophysical Research Communications, 372(1), 57–61. https://doi.org/10.1016/j.bbrc.2008.04.140
  • El Bakri, Y., Ahmad, B., Saravanan, K., Ahmad, I., Bakhite, E. A., Younis, O., Al-Waleedy, S. A. H., Ibrahim, O. F., Nafady, A., Mague, J. T., & Mohamed, S. K. (2023). Insight into crystal structures and identification of potential styrylthieno[2,3-b]pyridine-2-carboxamidederivatives against COVID-19 Mpro through structure-guided modeling and simulation approach. Journal of Biomolecular Structure & Dynamics, 1–19. https://doi.org/10.1080/07391102.2023.2220799
  • El Bakri, Y., Karthikeyan, S., Lai, C. H., Bakhite, E. A., Ahmad, I., Abdel-Rahman, A. E., Abuelhassan, S., Marae, I. S., Mohamed, S. K., & Mague, J. T. (2023). New tetrahydroisoquinoline-4-carbonitrile derivatives as potent agents against cyclin-dependent kinases, crystal structures, and computational studies. Journal of Biomolecular Structure and Dynamics, 1–19. https://doi.org/10.1080/07391102.2023.2224899
  • Elsaman, T., Ahmad, I., Eltayib, E. M., Suliman Mohamed, M., Yusuf, O., Saeed, M., Patel, H., & Mohamed, M. A. (2023). Flavonostilbenes natural hybrids from Rhamnoneuron balansae as potential antitumors using ALDH1A1: Molecular docking, ADMET, MM-GBSA calculations and molecular dynamics studies. Journal of Biomolecular Structure & Dynamics, 1–18. https://doi.org/10.1080/07391102.2023.2218936
  • Habtemariam, S. (1997). Flavonoids as inhibitors or enhancers of the cytotoxicity of tumor necrosis factor-alpha in L-929 tumor cells. Journal of Natural Products, 60(8), 775–778. https://doi.org/10.1021/np960581z
  • Halasi, M., & Gartel, A. L. (2013). Using FOXM1 in cancer. Biochemical Pharmacology, 85(5), 644–652. https://doi.org/10.1016/j.bcp.2012.10.013
  • Han, X. Y., Zhou, Z. Y., Li, S. Y., & Xue, S. T. (2023). Advances in inhibitors of potential tumor target FOXM1. Future Medicinal Chemistry, 15(10), 809–812. https://doi.org/10.4155/fmc-2023-0118
  • Hoshide, R., & Jandial, R. (2016). 2016 World Health Organization classification of central nervous system tumors: An era of molecular biology. World Neurosurgery, 94, 561–562. https://doi.org/10.1016/j.wneu.2016.07.082
  • Hossain, F. M. A., Bappy, M. N. I., Robin, T. B., Ahmad, I., Patel, H., Jahan, N., Rabbi, M. G. R., Roy, A., Chowdhury, W., Ahmed, N., Prome, A. A., Rani, N. A., Khan, P., & Zinnah, K. M. A. (2023). A review on computational studies and bioinformatics analysis of potential drugs against monkeypox virus. Journal of Biomolecular Structure & Dynamics, 1–17. https://doi.org/10.1080/07391102.2023.2231542
  • King, J. L., & Benhabbour, S. R. (2021). Glioblastoma Multiforme—A look at the past and a glance at the future. Pharmaceutics, 13(7), 1053. https://doi.org/10.3390/pharmaceutics13071053
  • Lee, Y., Kim, K. H., Kim, D. G., Cho, H. J., Kim, Y., Rheey, J., Shin, K., Seo, Y. J., Choi, Y. S., Lee, J. I., Lee, J., Joo, K. M., & Nam, D. H. (2015). FoxM1 promotes stemness and radio-resistance of glioblastoma by regulating the master stem cell regulator Sox2. PloS One, 10(10), e0137703. https://doi.org/10.1371/journal.pone.0137703
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4–17. https://doi.org/10.1016/j.addr.2012.09.019
  • Littler, D. R., Alvarez-Fernández, M., Stein, A., Hibbert, R. G., Heidebrecht, T., Aloy, P., Medema, R. H., & Perrakis, A. (2010). Structure of the FoxM1 DNA-recognition domain bound to a promoter sequence. Nucleic Acids Research, 38(13), 4527–4538. https://doi.org/10.1093/nar/gkq194
  • Liu, Y., Chen, Z., Li, A., Liu, R., Yang, H., & Xia, X. (2022). The phytochemical potential for brain disease therapy and the possible nanodelivery solutions for brain access. Frontiers in Oncology, 12, 936054. https://doi.org/10.3389/fonc.2022.936054
  • Maliyakkal, N., Ahmad, I., Kumar, S., Thazhathuveedu Sudevan, S., Appadath Beeran, A., Patel, H., Kim, H., & Mathew, B. (2023). A structural approach to investigate halogen substituted MAO-B inhibitors using QSAR modeling, molecular dynamics, and conceptual DFT analysis. Journal of Saudi Chemical Society, 27(4), 101675. https://doi.org/10.1016/j.jscs.2023.101675
  • Mangal, M., Sagar, P., Singh, H., Raghava, G. P. S., & Agarwal, S. M. (2013). NPACT: Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database Nucleic Acids Research (NAR 2013, 41, D1124 - D1129) https://doi.org/10.1093/nar/gks1047
  • Meng, F. D., Wei, J. C., Qu, K., Wang, Z. X., Wu, Q. F., Tai, M. H., Liu, H. C., Zhang, R. Y., & Liu, C. (2015). FoxM1 overexpression promotes epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma. World Journal of Gastroenterology, 21(1), 196–213. https://doi.org/10.3748/wjg.v21.i1.196
  • Mohamed, M. A. F., Benjamin, I., Okon, G. A., Ahmad, I., Khan, S. A. P. M., Patel, H., Agwamba, E. C., & Louis, H. (2023). Insights into in-vitro studies and molecular modelling of the antimicrobial efficiency of 4-chlorobenzaldehyde and 4-methoxybenzaldehyde derivatives. Journal of Biomolecular Structure & Dynamics, 1–23. https://doi.org/10.1080/07391102.2023.2239917
  • Naik, H. N., Kanjariya, D., Parveen, S., Meena, A., Ahmad, I., Patel, H., Meena, R., & Jauhari, S. (2023). Dalbergia sissoo phytochemicals as EGFR inhibitors: An in vitro and in silico approach. Journal of Biomolecular Structure & Dynamics, 1–13. https://doi.org/10.1080/07391102.2023.2229437
  • Patel, P. P., Patel, N. B., Tople, M. S., Patel, V. M., Ahmed, I., & Patel, H. (2023). Microwave produced 8-methyl-1,2,4,8-tetraazaspiro[4.5]dec-2-en-3-amine derivatives: Their in vitro and in silico analysis. Molecular Diversity, https://doi.org/10.1007/s11030-023-10665-z
  • Patel, K. B., Rajani, D., Ahmad, I., Patel, H., Patel, H. D., & Kumari, P. (2023). Chrysin based pyrimidine-piperazine hybrids: Design, synthesis, in vitro antimicrobial and in silico E. coli topoisomerase II DNA gyrase efficacy. Molecular Diversity, https://doi.org/10.1007/s11030-023-10663-1
  • Pereyra-Vergara, F., Olivares-Corichi, I. M., Perez-Ruiz, A. G., Luna-Arias, J. P., & García-Sánchez, J. R. (2020). Apoptosis induced by (-)-epicatechin in human breast cancer cells is mediated by reactive oxygen species. Molecules (Basel, Switzerland), 25(5), 1020. https://doi.org/10.3390/molecules25051020
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Ricci-López, J., Vidal-Limon, A., Zunñiga, M., Jimènez, V. A., Alderete, J. B., Brizuela, C. A., & Aguila, S. (2019). Molecular modeling simulation studies reveal new potential inhibitors against HPV E6 protein. PloS One, 14(3), e0213028. https://doi.org/10.1371/journal.pone.0213028
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Shim, J. K., Lim, S. H., Jeong, J. H., Choi, R. J., Oh, Y., Park, J., Choi, S., Hong, J., Kim, S. J., Moon, J. H., Kim, E. H., Teo, W. Y., Park, B. J., Chang, J. H., Ryu, J. H., & Kang, S. G. (2022). A lignan from Alnus japonica inhibits glioblastoma tumorspheres by suppression of FOXM1. Scientific Reports, 12(1), 13990. https://doi.org/10.1038/s41598-022-18185-w
  • Shinde, A. D., Nandurkar, Y. M., Bhalekar, S., Walunj, Y. S., Ugale, S., Ahmad, I., Patel, H., Chavan, A. P., & Mhaske, P. C. (2023). Investigation of new 1,2,3-triazolyl-quinolinyl-propan-2-ol derivatives as potential antimicrobial agents: In vitro and in silico approach. Journal of Biomolecular Structure & Dynamics, 1–17. https://doi.org/10.1080/07391102.2023.2217922
  • Su, X., Yang, Y., Yang, Q., Pang, B., Sun, S., Wang, Y., Qiao, Q., Guo, C., Liu, H., & Pang, Q. (2021). NOX4-derived ROS-induced overexpression of FOXM1 regulates aerobic glycolysis in glioblastoma. BMC Cancer, 21(1), 1181. https://doi.org/10.1186/s12885-021-08933-y
  • Tabatabaei-Dakhili, S. A., Aguayo-Ortiz, R., Domínguez, L., & Velázquez-Martínez, C. A. (2018). Untying the knot of transcription factor druggability: Molecular modeling study of FOXM1 inhibitors. Journal of Molecular Graphics & Modelling, 80, 197–210. https://doi.org/10.1016/j.jmgm.2018.01.009
  • Thomas Parambi, D. G., Oh, J. M., Kumar, S., Sudevan, S. T., Hendawy, O. M., Abdelgawad, M. A., Musa, A., Al-Sanea, M. M., Ahmad, I., Patel, H., Kim, H., & Mathew, B. (2023). Halogenated class of oximes as a new class of monoamine oxidase-B inhibitors for the treatment of Parkinson’s disease: Synthesis, biochemistry, and molecular dynamics study. Computational Biology and Chemistry, 105, 107899. https://doi.org/10.1016/j.compbiolchem.2023.107899
  • Xie, Z. S., Zhou, Z. Y., Sun, L. Q., Yi, H., Xue, S. T., & Li, Z. R. (2022). Structure-based virtual screening towards the discovery of novel FOXM1 inhibitors. Future Medicinal Chemistry, 14(4), 207–219. https://doi.org/10.4155/fmc-2021-0282
  • Zala, A. R., Tiwari, R., Naik, H. N., Ahmad, I., Patel, H., Jauhari, S., & Kumari, P. (2023). Design and synthesis of pyrrolo[2,3-d]pyrimidine linked hybrids as α-amylase inhibitors: Molecular docking, MD simulation, ADMET and antidiabetic screening. Molecular Diversity, https://doi.org/10.1007/s11030-023-10683-x
  • Zhang, Y., Chen, Y., Wang, Y., Wang, F., Zhou, X., & Sun, Y. (2010). (-) Epicatechin inhibits the growth of human prostate cancer cells by inducing apoptosis and suppressing angiogenesis. Prostate, 70(1), 116–124.
  • Zuegg, J., & A. Cooper, M. (2012). Drug-likeness and increased hydrophobicity of commercially available compound libraries for drug screening. Current Topics in Medicinal Chemistry, 12(14), 1500–1513. https://doi.org/10.2174/156802612802652466

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.