275
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Novel complex compounds of nickel with 3-(1-phenyl-2,3-dimethyl-pyrazolone-5)azopentadione-2,4: synthesis, NBO analysis, reactivity descriptors and in silico and in vitro anti-cancer and bioactivity studies

, , ORCID Icon, , , , , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Received 29 Nov 2023, Accepted 18 Jan 2024, Published online: 31 Jan 2024

References

  • Aliyeva, R. A., & Chyraqov, F. M. (2004). Dissociatione and stability constans for their complexes. Russian Journal of Inorganic Chemistry, 49, 1111–1113.
  • Aliyeva, R. A., Chyraqov, F. M., & Mahmudov, K. T. (2004). Dissociation constans of 2-fenyltrifluorocetone azoderivative and stability constans of its complexes. Russian Journal of Inorganic Chemistry, 49, 1458–1460.
  • Al-Zinkee, J. M. M., & Jarad, A. J. (2018). Synthesis, characterization and microbial efficiency of Azo dye ligand complexes with some metal ions. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 9(6), 144–155.
  • Becke, A. D. (1993). Density-functional thermo chemistry. III. The role of exact exchange. Chemical Physics, 98, 5648–5652.
  • Bondock, S., Rabie, R., Etman, H. A., & Fadda, A. A. (2008). Synthesis and antimicrobial activity of some new heterocycles incorporating antipyrine moiety. European Journal of Medicinal Chemistry, 43(10), 2122–2129. https://doi.org/10.1016/j.ejmech.2007.12.009
  • Chakraborty, T., Gazi, K., & Ghosh, D. C. (2010). Computation of the atomic radii through the conjoint action of the effective nuclear charge and the ionization energy. Molecular Physics, 108(16), 2081–2092. https://doi.org/10.1080/00268976.2010.505208
  • Chattaraj, P. K. (1992). Electronegativity and hardness: A density functional treatment. Journal of the Indian Chemical Society, 69, 173–183.
  • Chattaraj, P. K., & Roy, D. R. (2007). Update 1 of: Electrophilicity index. Chemical Reviews, 107(9), PR46–PR74. PMID:21306180. https://doi.org/10.1021/cr078014b
  • Chattaraj, P. K., Sarkar, U., & Roy, D. R. (2006). Electrophilicity index. Chemical Reviews, 106(6), 2065–2091. PMID:16771443 https://doi.org/10.1021/cr040109f
  • Chaulia, S. N. (2016). Metal complexes of multidentate azo dye ligand derived from 4-aminoantipyrine and 2, 4-dihydroxy acetophenone; synthesis, characterisation, computational and biological study. Der Pharmacia Lettre, 8(21), 55–74.
  • Demirkıran, Ö., Erol, E., Şenol, H., Kesdi, İ. M., Alim Toraman, G. Ö., Okudan, E. Ş., & Topcu, G. (2024). Cytotoxic meroterpenoids from brown alga Stypopodium schimperi (Kützing) Verlaque & Boudouresque with comprehensive molecular docking & dynamics and ADME studies. Process Biochemistry, 136, 90–108. https://doi.org/10.1016/j.procbio.2023.11.029
  • Dennington, R., Keith, T., & Millam, J. (2016). Gauss view, Version 6.0.16. Semichem Inc., Shawnee Mission.
  • Ellman, G. L., Courtney, K. D., Andres, V., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Farghaly, A. M. (1981). Some novel pyrozalone derivatives as antinflammatory agents. Pharmazie, 36(2), 93–95.
  • Fatullayeva, P. A., Mejidov, A. A., Safronenko, M. G., Khrustalev, V. N., Yalcin, B., Sadeghian, N., Sadeghi, M., & Taslim, P. (2023). E)-N′(3,5-di-tert-butil-2-hedroxybenzilidene)-2-hydroxybenzo-hydrazide (H3sahz)2 Copper (II) Complex: Synthesis, crystal structures, in silico evaluations, and enzymatic inhibition. ChemistrySelect, 8(15), e202300319. ((https://doi.org/10.1002/slct.202300319
  • Fleming, I. (1976). Frontier orbitals and organic chemical reactions. John Wiley and Sons, 249 P.
  • Frisch, M. J., Trucks, G. W., & Schlegel, H. B. (2013). Gaussian 09, Revision D.01. Gaussian, Inc.
  • Gadzhieva, S. R., Guseinov, F. E., & Chyragov, F. M. (2006). Study of color reaction of erbium(III) with 2-(2,3-dimethyl-4-phenylazopyrosolone) naphthalene-1,8-dihydroxy-3,6-disulfonate sodium and cetylpyridinium chloride. Journal of Analytical Chemistry, 61(12), 1163–1166. In Russ. https://doi.org/10.1134/S1061934806120069
  • Genc, M., Karagoz Genc, Z., Tekin, S., Sandal, S., Sirajuddin, M., Hadda Taibi, B., & Sekerci, M. (2016). Design, synthesis, in vitro antiproliferative activity, binding modeling of 1,2,4,-triazoles as new anti-breast cancer agents. Acta Chimica Slovenica, 63(4), 726–737. https://doi.org/10.17344/acsi.2016.2428
  • Gök, Y., Taslimi, P., Şen, B., Bal, S., Aktaş, A., Aygün, M., Sadeghi, M., & Gülçin, İ. (2023). Design, synthesis, characterization, crystal structure, in silico studies, and inhibitory properties of the PEPPSI type Pd(II)NHC complexes bearing chloro/fluorobenzyl group. Bioorganic Chemistry, 135, 106513. https://doi.org/10.1016/j.bioorg.2023.106513
  • Grothey, A. (2020). EGFR inhibition in colorectal cancer with liver metastasis. Clinical Advances in Hematology & Oncology, 18(6), 319–321.
  • Hassan, S. S., & Khalf-Alla, P. A. (2020). Anti‐hepatocellular carcinoma, antioxidant, anti‐inflammation and antimicrobial investigation of some novel first and second transition metal complexes. Applied Organometallic Chemistry, 34, е5432.
  • Helal, T. A., Mohammed, H. J., & Mohsein, H. F. (2018). Synthesis with spectral investigation of new azomethine – azo ligands derived from 4-amino antipyrine with its some complexes. International Journal of Pharmaceutical Research, 10(3), 385–390.
  • Kakiuchi, Y., Sasaki, N., Satoh-Masuoka, M., Murofushi, H., & Murakami-Murofushi, K. (2004). A novel pyrazolone, 4,4-dichloro-1-(2,4-dichlorophenyl)-3-methyl-5-pyrazolone, as a potent catalytic inhibitor of human telomerase. Biochemical and Biophysical Research Communications, 320(4), 1351–1358. https://doi.org/10.1016/j.bbrc.2004.06.094
  • Kareem, M. A., & Salman, H. (2017). Synthesis, characterization and antimicrobial studies of transitionmetal complexes with azo ligand derivative from 4-aminoantipyrine mesop. Environmental Journal, (Special Issue C), 83–91.
  • Karimov, A., Taslimi, P., Orujova, A., Mammadova, K., Kısa, D., Farzaliyev, V., Sujayev, A., Sadeghian, N., Taskin‐Tok, T., Alwasel, S., & Gulcin, I. (2023). Design, synthesis, characterization and biological activities of novel S‐(Acyloxy) butyl‐N, N‐diethyldithiocarbamate compounds. ChemistrySelect, 8(18), e202300286. https://doi.org/10.1002/slct.202300286
  • Kashyap, S., Kumar, S., & Ramasamy, K. (2018). Synthesis, biological evaluation and corrosion inhibition studies of transition metal complexes of Schiff base. Chemistry Central Journal, 12, 117.
  • Kirkan, B., & Gup, R. (2008). Synthesis of new azo dyes and copper(II) complexes derived from barbituric acid and 4-aminobenzoylhydrazone. Turkish Journal of Chemistry, 32(1), 9–17.
  • Koopmans, T. (1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1(1-6), 104–113. https://doi.org/10.1016/S0031-8914(34)90011-2
  • Kovalchukova, O. V., Anh, V. T. N., Utenyshev, A. N., Stash, A. I., Ryabov, M. A., Abbas, A. T. R. A., Voronkova, V. K., & Bazan, L. V. (2020). Novel Cu(II), Ni(II), Zn(II), Cd(II), and Mg(II) complexes with a series of 2-arylhydrazono-1,3-dicarbonyl compounds. Synthesis, structure and spectroscopic characteristics. Polyhedron, V, 184, 114557. https://doi.org/10.1016/j.poly.2020.114557
  • Krishnan, M. A., Saranyaparvathi, S., Raksha, C., Vrinda, B., Girish, C. G., Kulkarni, N. V., & Kharisov, B. I. (2022). Transition metal complexes of 4-aminoantipyrine derivatives and their antimicrobial applications. Russian Journal of Coordination Chemistry, 48(11), 696–724. https://doi.org/10.1134/S1070328422110082
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle–Salvetticongelation energy formula into a functional of the electron density. Physical Review. B, Condensed Matter, 37(2), 785–789. https://doi.org/10.1103/physrevb.37.785
  • Lutsevich, A. N., Bender, K. I., & Reshet’ko, O. V. (1995). The relationship between antipyrine kinetics, the seromucoid content and the xanthine oxidase activity in the plasma of rats with acute and chronic inflammation. Eksperimental’naia i Klinicheskaia Farmakologiia, 58(4), 51–55.
  • Maharramov, A. M., Aliyeva, R. A., & Nagiyev, K. (2015). Sinthees azoderivatives of 4-amino-antipirina and investigationof complexformation with nikel(II). Chemical Journal of Georgia, 15(1), 11–15. р.
  • Mahmudov, I. H., Atioğlu, Z., Akkurt, M., Abdullayev, Y. A., Sujayev, A. R., & Bhattarai, A. (2022). 2-(4-amino-6-phenyl-1,2,5,6-tetrahydro-1,3,5-triazin-2-ylidene)malononitrile dimethylformamide hemisolvate. Acta Crystallographica. Section E, Crystallographic Communications, 78(Pt 8), 779–784. https://doi.org/10.1107/S2056989022006910
  • Mahmudov, I. H., Gurbanov, A. V., Martins, L., Abdullayev, Y. A., Sujayev, A. R., Mahmudov, K. T., & Pombeiro, A. L. (2023). Co (II/III), Ni (II) and Cu (II) complexes with a pyrazole-functionalized 1, 3, 5-triazopentadiene: Synthesis, structure and application in the oxidation of styrene to benzaldehyde. New Journal of Chemistry, 47(22), 10826–10833. https://doi.org/10.1039/D3NJ01120H
  • Makhmudov, K. T. (2006). Research and analytical application of copper(II) complexes with azo derivatives of β-diketones. Cand. of Chem. thesis.-Baku, 215. с.
  • Mardanova, V. I. (2010). Spectrophotometric study and determination of nickel(II) complexes with various azo compounds [Abstract of the dissertation for the degree of Doctor of Philosophy in Chemistry].
  • Masruri, M., Amini, R. W., & Rahman, M. F. (2016). Potassium permanganate-catalyzed alpha-pinene oxidation: Formation of coordination compound with zinc(II) and copper(II), and growth inhibition activity on Staphylococcus aureus and Escherichia coli. Indonesian Journal of Chemistry, 16(1), 59–64. https://doi.org/10.22146/ijc.21178
  • Metwally, M. A., Gouda, M. A., Harmal, A. N., & Khalil, A. M. (2012). Synthesis, antitumor, cytotoxic and antioxidant evaluation of some new pyrazolotriazines attached to antipyrine moiety. European Journal of Medicinal Chemistry, 56, 254–262. https://doi.org/10.1016/j.ejmech.2012.08.034
  • Mohammed, L. A., Mahdi, N. I., & Aldujaili, R. A. B. (2020). Preparation, characterization and the biological activity study of a new heterocyclic (Azo-Schiff base) ligand and their complexation with {Co,Ni,Cu,Zn(II)}Ions. Egyptian Journal of Chemistry, 63(1), 289–300. https://doi.org/10.21608/ejchem.2019.19821.2195
  • Mohanram, I., & Meshram, J. (2014). Synthesis and biological activities of 4-aminoantipyrine derivatives derived from betti-type reaction. ISRN Organic Chemistry, 2014, 639392. https://doi.org/10.1155/2014/639392
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
  • Mustafa, A. H. (2019). Pyrazoles and isoxazoles based sulfanilamide and phenazone as antimicrobal agents: Sunthesis and biological activity. Russian Journal of General Shemistry, 89(II), 2314–2320.
  • Naderi, A., Akincioğlu, A., Çağan, A., Göksu, S., Taslimi, P., & Gülçin, I. (2023). Design, synthesis, characterization, bioactivity and molecular docking studies of novel sulfamides. Studia Universitatis Babeș-Bolyai Chemia, 68(2), 145–168. https://doi.org/10.24193/subbchem.2023.2.10
  • Ndidiamara, A. (2010). Synthesis, characterization and biological activites of some azo liqand and their metal complexes 1,2-dihidro-1,5-dimethil-2-phenyl-4-(E)-(2,3,4-thihydroxsil-phenyl) azo-3H-pyrazol-3-one(H3L) and its Cd(II), Fe(III) and Os(VI) complexes (Calcutta, India). International Journal of Inorganic Chemistry, 20(4), 217–225.
  • Orie, K. J., Duru, R. U., & Ngochindo, R. I. (2021). Synthesis and complexation of monotosylated 4-aminopyridine with Nickel (II) and Iron (II) Ions. Makara Journal of Science, 25(3), 172–−179.
  • Pahontu, E. M. (2017). Transition metal complexes with antipyrine‐derived schiff bases: Synthesis and antibacterial activity. In Descriptive inorganic chemistry researches of metal compounds (pp. 65–92. Chapter 4). IntechOpen.
  • Parr, R. G., Donnelly, R. A., Levy, M., & Palke, W. E. (1978). Electronegativity: The density functional viewpoint. The Journal of Chemical Physics, 68(8), 3801–3807. https://doi.org/10.1063/1.436185
  • Parr, R. G., & Pearson, R. G. (1983). Absolute hardness: Companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105(26), 7512–7516. https://doi.org/10.1021/ja00364a005
  • Parr, R. G., Szentpály, L. V., & Liu, S. (1999). Electrophilicity Index. Journal of the American Chemical Society, 121(9), 1922–1924. https://doi.org/10.1021/ja983494x
  • Pearson, R. G. (1997). Chemical hardness: Applications from molecules to solids. WileyVCH. https://doi.org/10.1002/3527606173
  • Petersson, G. A., & Al-Laham, M. A. (1991). A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms. The Journal of Chemical Physics, 94(9), 6081–6090. https://doi.org/10.1063/1.460447
  • Petersson, G. A., Bennett, A., Tensfeldt, T. G., Al-Laham, M. A., Shirley, W. A., & Mantzaris, J. (1988). A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements. The Journal of Chemical Physics, 89(4), 2193–2218. https://doi.org/10.1063/1.455064
  • Rasyda, Y. A., Widowati, M. K., Marliyana, S. D., & Rahardjo, S. B. (2021). Synthesis, characterization and antibacterial properties of Nickel(II) complex with 4-aminoantipyrine ligand. Indonesian Journal of Chemistry, 21(2), 391–399. https://doi.org/10.22146/ijc.56552
  • Ravikumar, C., Joe, I. H., & Jayakumar, V. S. (2008). Charge transfer interactions and nonlinear optical properties of push-pull chromophore benzaldehyde phenylhydrazone: A vibrational approach. Chemical Physics Letters, 460(4-6), 552–558. https://doi.org/10.1016/j.cplett.2008.06.047
  • Ravina, E. (2011). The evolution of drug discovery: From traditional medicines to modern drugs. Wiley.
  • Ravindran, R. (2016). Sunthesis and characterization of chromium(III) and characterization of chromium(III) and manganese (III) complexews with a hidrazona derived from pyrozolone and β-diketone. Asian Journal of Chemistry, 18(4), 3022–3026.
  • Riaz, M. T., Taslimi, P., Yaqub, M., Al-Rashida, M., Alharthy, R. D., El-Gokha, A., & Shafiq, Z. (2023). Functionalized diazabenzo[a]anthracenediones: Regioselective multicomponent synthesis and biological and computational studies as potential cholinesterase inhibitors. ChemistrySelect, 8(22), e202300648. https://doi.org/10.1002/slct.202300648
  • Sanderson, R. T. (1988). Principle of electronegativity. Part I. General nature. Journal of Chemical Education, 65(2), 112–118. https://doi.org/10.1021/ed065p112
  • Şenol, H., Ağgül, A. G., & Atasoy, S. (2023a). Synthesis, characterization, molecular docking and in vitro biological studies of thiazolidin-4-one derivatives as anti-breast-cancer agents. ChemistrySelect, 8(20), e202300481. https://doi.org/10.1002/slct.202300481
  • Şenol, H., Ağgül, A. G., Atasoy, S., & Güzeldemirci, N. U. (2023b). Synthesis, characterization, molecular docking and in vitro anti-cancer activity studies of new and highly selective 1,2,3-triazole substituted 4-hydroxybenzohyrdazide derivatives. Journal of Molecular Structure, 1283, 135247. https://doi.org/10.1016/j.molstruc.2023.135247
  • Şenol, H., Çağman, Z., Katmerlikaya, T. G., & Tokalı, F. S. (2023c). New anthranilic acid hydrazones as fenamate isosteres: Synthesis, characterization, molecular docking, dynamics & in silico adme, in vitro anti-inflammatory and anti-cancer activity studies. Chemistry & Biodiversity, 20(8), e202300773. https://doi.org/10.1002/cbdv.202300773
  • Şenol, H., & Çakır, F. (2023). 3-Amino-thiophene-2-carbohydrazide derivatives as anti colon cancer agents: synthesis, characterization, in-silico and in-vitro biological activity studies. ChemistrySelect, 8(39), e202302448. https://doi.org/10.1002/slct.202302448
  • Şenol, H., Çelik Turgut, G., Şen, A., Sağlamtaş, R., Tuncay, S., Gülçin, İ., & Topçu, G. (2023d). Synthesis of nitrogen-containing oleanolic acid derivatives as carbonic anhydrase and acetylcholinesterase inhibitors. Medicinal Chemistry Research, 32(4), 694–704. https://doi.org/10.1007/s00044-023-03031-z
  • Şenol, H., Ghaffari-Moghaddam, M., Alim Toraman, G. Ö., & Güller, U. (2024). Novel chalcone derivatives of ursolic acid as acetylcholinesterase inhibitors: Synthesis, characterization, biological activity, ADME prediction, molecular docking and molecular dynamics studies. Journal of Molecular Structure. 1295, 136804. https://doi.org/10.1016/j.molstruc.2023.136804
  • Şenol, H., Ghaffari-Moghaddam, M., Bulut, Ş., Akbaş, F., Köse, A., & Topçu, G. (2023). Synthesis and anticancer activity of novel derivatives of α,β-unsaturated ketones based on oleanolic acid: In vitro and in silico studies against prostate cancer cells. Chemistry & Biodiversity, 20(9), e202301089. https://doi.org/10.1002/cbdv.202301089
  • Senol, H., Ozgun-Acar, O., Dağ, A., Eken, A., Guner, H., Aykut, Z. G., Topcu, G., & Sen, A. (2023e). Synthesis and comprehensive in vivo activity profiling of olean-12-en-28-ol, 3β-pentacosanoate in experimental autoimmune encephalomyelitis: A natural remyelinating and anti-inflammatory agent. Journal of Natural Products, 86(1), 103–118. https://doi.org/10.1021/acs.jnatprod.2c00798
  • Sigroha, S., Narasimhan, B., Kumar, P., Khatkar, A., Ramasamy, K., Mani, V., Mishra, R. K., & Majeed, A. B. A. (2012). Design, dynthesis, antimicrobial, anticancer evaluation, and QSAR studies of 4-(substitutedbenzylideneamino)-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-ones. Medicinal Chemistry Research, 21(11), 3863–3875. https://doi.org/10.1007/s00044-011-9906-8
  • Sopo, M., Anttila, M., Hämäläinen, K., Kivelä, A., Ylä-Herttuala, S., Kosma, V. M., Keski-Nisula, L., & Sallinen, H. (2019). Expression profiles of VEGF-A, VEGF-D and VEGFR1 are higher in distant metastases than in matched primary high grade epithelial ovarian cancer. BMC Cancer, 19(1), 584. https://doi.org/10.1186/s12885-019-5757-3
  • Tokalı, F. S., Şenol, H., Yetke, H. İ., & Hacıosmanoğlu-Aldoğan, E. (2023). Novel quinazoline–chromene hybrids as anticancer agents: Synthesis, biological activity, molecular docking, dynamics and ADME studies. Archiv Der Pharmazie. 356(11), e202300423. https://doi.org/10.1002/ardp.202300423
  • Tokalı, F. S., Taslimi, P., Sadeghian, N., Taskin-Tok, T., & Gülçin, İ. (2023). Synthesis, characterization, bioactivity impacts of new anthranilic acid hydrazones containing aryl sulfonate moiety as fenamate isosteres. ChemistrySelect, 8(13), e202300241. https://doi.org/10.1002/slct.202300241
  • Tokalı, F. S., Taslimi, P., Sadeghi, M., & Şenol, H. (2023). Synthesis and evaluation of quinazolin-4(3H)-one derivatives as multitarget metabolic enzyme inhibitors: A biochemistry-oriented drug design. ChemistrySelect, 8(25), e202301158. https://doi.org/10.1002/slct.202301158
  • Umadevi, M., Muthuraj, V., & Vanajothi, R. (2019). Synthesis of coumarin derivatives and its Ru(II) complexes encompassing pyrazole ring as a potent antidiabetic agents – A biochemical perspective. Inorganica Chimica Acta, 492, 48–59. https://doi.org/10.1016/j.ica.2019.04.029
  • Vaz, P. V., & Ribeiro-Claro, P. J. A. (2003). C—H···O hydrogen bonds in liquid cyclohexanone revealed by the νC–O splitting and the νC–H blue shift. Journal of Raman Spectroscopy, 34(11), 863–867. https://doi.org/10.1002/jrs.1066
  • Weinhold, F., & Landis, C. R. (2005). Valency and bonding: A natural bond orbital donor-acceptor perspective. Cambridge University Press.
  • Yakan, H., Azam, M., Kansız, S., Muğlu, H., Ergül, M., Taslimi, P., Koçyiğit, Ü. M., Karaman, M., Al-Resayes, S. I., & Min, K. (2023). Isatin/thiosemicarbohydrazone hybrids: Facile synthesis, and their evaluation as anti-proliferatıve agents and metabolıc enzyme inhibitors. Bulletin of the Chemical Society of Ethiopia, 37(5), 1221–1236. https://doi.org/10.4314/bcse.v37i5.14

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.