105
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hist-i-fy—a multiple histidine post-translational-modification (PTM) prediction server based on protein sequences using convolution neural network: a case study on mass spectroscopy data

, , , &
Received 24 Jul 2023, Accepted 19 Jan 2024, Published online: 29 Jan 2024

References

  • Bhatnagar, A., & Bandyopadhyay, D. (2018). Characterization of cysteine thiol modifications based on protein microenvironments and local secondary structures. Proteins, 86(2), 192–209. https://doi.org/10.1002/prot.25424
  • Bhatnagar, A., Apostol, M. I., & Bandyopadhyay, D. (2016). Amino acid function relates to its embedded protein microenvironment: A study on disulfide-bridged cystine. Proteins Struct. Funct. Bioinforma, 84(11), 1576–1589. https://doi.org/10.1002/prot.25101
  • Bridgewater, J. D., Srikanth, R., Lim, J., & Vachet, R. W. (2007). The effect of histidine oxidation on the dissociation patterns of peptide ions. Journal of the American Society for Mass Spectrometry, 18(3), 553–562. https://doi.org/10.1016/j.jasms.2006.11.001
  • Buch-Larsen, S. C., Hendriks, I. A., Lodge, J. M, Rykær, M., Furtwängler, B., Shishkova, E., Westphall, M. S., Coon, J. J., & Nielsen, M. L. (2020). Mapping physiological ADP-ribosylation using activated ion electron transfer dissociation. Cell Rep, 32, 108176. https://doi.org/10.1016/j.celrep.2020.108176
  • Chen, Z., Zhao, P., Li, F., Leier, A., Marquez-Lago, T. T., Webb, G. I., Baggag, A., Bensmail, H., & Song, J. (2020). PROSPECT: A web server for predicting protein histidine phosphorylation sites. Journal of Bioinformatics and Computational Biology, 18(4), 2050018. https://doi.org/10.1142/S0219720020500183
  • Cui, M., Cheng, C., & Zhang, L. (2022). High-throughput proteomics: A methodological mini-review. Laboratory Investigation; A Journal of Technical Methods and Pathology, 102(11), 1170–1181. https://doi.org/10.1038/s41374-022-00830-7
  • Du, Z., Shemella, P. T., Liu, Y., McCallum, S. A., Pereira, B., Nayak, S. K., Belfort, G., Belfort, M., & Wang, C. (2009). Highly conserved histidine plays a dual catalytic role in protein splicing: A pKa shift mechanism. Journal of the American Chemical Society, 131(32), 11581–11589. https://doi.org/10.1021/ja904318w
  • Dutta, D., Mandal, C., & Mandal, C. (2017). Unusual glycosylation of proteins: Beyond the universal sequon and other amino acids. Biochimica et biophysica acta. General Subjects, 1861(12), 3096–3108. https://doi.org/10.1016/j.bbagen.2017.08.025
  • Gutteridge, A., & Thornton, J. M. (2005). Understanding nature’s catalytic toolkit. Trends in Biochemical Sciences, 30(11), 622–629. https://doi.org/10.1016/j.tibs.2005.09.006
  • Harris, T. K., & Turner, G. J. (2002). Structural basis of perturbed pKa values of catalytic groups in enzyme active sites. IUBMB Life, 53(2), 85–98. https://doi.org/10.1080/15216540211468
  • Herrmann, J. R., Panitz, J. C., Unterreitmeier, S., Fuchs, A., Frishman, D., & Langosch, D. (2009). Complex patterns of histidine, hydroxylated amino acids and the GxxxG motif mediate high-affinity transmembrane domain interactions. Journal of Molecular Biology, 385(3), 912–923. https://doi.org/10.1016/j.jmb.2008.10.058
  • Jakobsson, M. E. (2021). Enzymology and significance of protein histidine methylation. The Journal of Biological Chemistry, 297(4), 101130. https://doi.org/10.1016/j.jbc.2021.101130
  • Jedlicka, L. D. L., Guterres, S. B., Balbino, A. M., Neto, G. B., Landgraf, R. G., Fernandes, L., Carrilho, E., Bechara, E. J. H., & Assuncao, N. A. (2018). Increased chemical acetylation of peptides and proteins in rats after daily ingestion of diacetyl analyzed by Nano-LC-MS/MS. PeerJ. 6, e4688. https://doi.org/10.7717/peerj.4688
  • KDnuggets. Tokenization and text data preparation with TensorFlow & Keras. KDnuggets. Retrieved April 14, 2023, from https://www.kdnuggets.com/tokenization-and-text-data-preparation-with-tensorflow-keras.html
  • Lc, S., & M, M. (2019). Using peptide arrays to discover the sequence-specific acetylation of the histidine-tyrosine dyad. Biochemistry, 58(13), 1810–1817. https://doi.org/10.1021/acs.biochem.9b00022
  • Lv, M., Cao, D., Zhang, L., Hu, C., Li, S., Zhang, P., Zhu, L., Yi, X., Li, C., Yang, A., Yang, Z., Zhu, Y., Zhang, K., & Pan, W. (2021). METTL9 mediated N1-histidine methylation of zinc transporters is required for tumor growth. Protein & Cell, 12(12), 965–970. https://doi.org/10.1007/s13238-021-00857-4
  • Markolovic, S., Wilkins, S. E., & Schofield, C. J. (2015). Protein hydroxylation catalyzed by 2-oxoglutarate-dependent oxygenases. The Journal of Biological Chemistry, 290(34), 20712–20722. https://doi.org/10.1074/jbc.R115.662627
  • Minnee, H., Rack, J. G. M., van der Marel, G. A., Overkleeft, H. S., Codée, J. D. C., Ahel, I., & Filippov, D. V. (2022). Mimetics of ADP-ribosylated histidine through copper(I)-catalyzed click chemistry. Organic Letters, 24(21), 3776–3780. https://doi.org/10.1021/acs.orglett.2c01300
  • Nallapareddy, V., Bogam, S., Devarakonda, H., Paliwal, S., & Bandyopadhyay, D. (2021). DeepCys: Structure-based multiple cysteine function prediction method trained on deep neural network: Case study on domains of unknown functions belonging to COX2 domains. Proteins, 89(7), 745–761. https://doi.org/10.1002/prot.26056
  • Passerini, A., Punta, M., Ceroni, A., Rost, B., & Frasconi, P. (2006). Identifying cysteines and histidines in transition-metal-binding sites using support vector machines and neural networks. Proteins Struct. Funct. Bioinforma, 65(2), 305–316. https://doi.org/10.1002/prot.21135
  • Potel, C. M., Lin, M.-H., Heck, A. J. R., & Lemeer, S. (2018). Widespread bacterial protein histidine phosphorylation revealed by mass spectrometry-based proteomics. Nature Methods, 15(3), 187–190. https://doi.org/10.1038/nmeth.4580
  • Puttick, J., Baker, E. N., & Delbaere, L. T. J. (2008). Histidine phosphorylation in biological systems. Biochimica et biophysica acta, 1784(1), 100–105. https://doi.org/10.1016/j.bbapap.2007.07.008
  • Schöneich, C. (1999). Reactive oxygen species and biological aging: A mechanistic approach. Experimental Gerontology, 34(1), 19–34. https://doi.org/10.1016/S0531-5565(98)00066-7
  • scikit-learn. sklearn.preprocessing.LabelBinarizer. scikit-learn. Retrieved April 14, 2023, from https://scikit-learn/stable/modules/generated/sklearn.preprocessing.LabelBinarizer.html
  • Terashima, K., Matsui, H., Hashimoto, D., Sato, T., Takahashi, T., Ding, H., Yamamoto, T., & Kadowaki, K. (2006). Impurity effects on electron–mode coupling in high-temperature superconductors. Nature Physics, 2(1), 27–31. https://doi.org/10.1038/nphys200
  • The UniProt Consortium. (2021). UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480–D489. https://doi.org/10.1093/nar/gkaa1100
  • Wolanin, P. M., Thomason, P. A., & Stock, J. B. (2002). Histidine protein kinases: Key signal transducers outside the animal kingdom. Genome Biology, 3(10), reviews3013.1-reviews3013–8. https://doi.org/10.1186/gb-2002-3-10-reviews3013
  • Xu, C.-F., Chen, Y., Yi, L., Brantley, T., Stanley, B., Sosic, Z., & Zang, L. (2017). Discovery and characterization of histidine oxidation initiated cross-links in an IgG1 monoclonal antibody. Analytical Chemistry, 89(15), 7915–7923. https://doi.org/10.1021/acs.analchem.7b00860
  • Zhao, J., Zhuang, M., Liu, J., Zhang, M., Zeng, C., Jiang, B., Wu, J., & Song, X. (2022). pHisPred: A tool for the identification of histidine phosphorylation sites by integrating amino acid patterns and properties. BMC Bioinformatics, 23(Suppl 3), 399. https://doi.org/10.1186/s12859-022-04938-x
  • Zhao, J., Zou, L., Li, Y., Liu, X., Zeng, C., Xu, C., Jiang, B., Guo, X., & Song, X. (2021). HisPhosSite: A comprehensive database of histidine phosphorylated proteins and sites. Journal of Proteomics, 243, 104262. https://doi.org/10.1016/j.jprot.2021.104262
  • Zurlo, G., Guo, J., Takada, M., Wei, W., & Zhang, Q. (2016). New Insights into Protein Hydroxylation and Its Important Role in Human Diseases. Biochimica et biophysica acta, 1866(2), 208–220. https://doi.org/10.1016/j.bbcan.2016.09.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.