110
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Unveiling fructose and glucose binding to human serum albumin: fluorescence measurements and docking, molecular dynamics and quantum biochemistry computations

ORCID Icon, , , , &
Received 29 Oct 2023, Accepted 19 Jan 2024, Published online: 30 Jan 2024

References

  • Anguizola, J., Matsuda, R., Barnaby, O. S., Hoy, K. S., Wa, C., DeBolt, E., Koke, M., & Hage, D. S. (2013). Review: Glycation of human serum albumin. Clinica Chimica Acta; International Journal of Clinical Chemistry, 425, 64–76. https://doi.org/10.1016/j.cca.2013.07.013
  • Antony, J., & Grimme, S. (2006). Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules. Physical Chemistry Chemical Physics: PCCP, 8(45), 5287–5293. https://doi.org/10.1039/b612585a
  • Antony, J., & Grimme, S. (2012). Fully ab initio protein-ligand interaction energies with dispersion corrected density functional theory. Journal of Computational Chemistry, 33(21), 1730–1739. https://doi.org/10.1002/jcc.23004
  • Ascenzi, P., di Masi, A., Fanali, G., & Fasano, M. (2015). Heme-based catalytic properties of human serum albumin. Cell Death Discovery, 1(1), 15025. https://doi.org/10.1038/cddiscovery.2015.25
  • Asp, N. (1994). Nutritional classification and analysis of food carbohydrates. The American Journal of Clinical Nutrition, 59(3 Suppl), 679S–681S. https://doi.org/10.1093/ajcn/59.3.679Sa
  • Awang, T., Niramitranon, J., Japrung, D., Saparpakorn, P., & Pongprayoon, P. (2021). Investigating the binding affinities of fructose and galactose to human serum albumin: Simulation studies. Molecular Simulation, 47(9), 738–747. https://doi.org/10.1080/08927022.2021.1922687
  • Awang, T., Wiriyatanakorn, N., Saparpakorn, P., Japrung, D., & Pongprayoon, P. (2017). Understanding the effects of two bound glucose in Sudlow site I on structure and function of human serum albumin: Theoretical studies. Journal of Biomolecular Structure & Dynamics, 35(4), 781–790. https://doi.org/10.1080/07391102.2016.1160841
  • Bai, X., Wang, Z., Huang, C., Wang, Z., & Chi, L. (2012). Investigation of non-enzymatic glycosylation of human serum albumin using ion trap-time of flight mass spectrometry. Molecules (Basel, Switzerland), 17(8), 8782–8794. https://doi.org/10.3390/molecules17088782
  • Barnaby, O. S., Cerny, R. L., Clarke, W., & Hage, D. S. (2011). Comparison of modification sites formed on human serum albumin at various stages of glycation. Clinica Chimica Acta; International Journal of Clinical Chemistry, 412(3–4), 277–285. https://doi.org/10.1016/j.cca.2010.10.018
  • Barzegar, A., Moosavi-Movahedi, A., Sattarahmady, N., Hosseinpour-Faizi, M., Aminbakhsh, M., Ahmad, F., Saboury, A., Ganjali, M., & Norouzi, P. (2007). Spectroscopic studies of the effects of glycation of human serum albumin on L-Trp binding. Protein and Peptide Letters, 14(1), 13–18. https://doi.org/10.2174/092986607779117191
  • Becke, A. D. (1992). Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. The Journal of Chemical Physics, 96(3), 2155–2160. https://doi.org/10.1063/1.462066
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Best, R. B., Zhu, X., Shim, J., Lopes, P. E. M., Mittal, J., Feig, M., & MacKerell, A. D. (2012). Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ 1 and χ 2 dihedral angles. Journal of Chemical Theory and Computation, 8(9), 3257–3273. https://doi.org/10.1021/ct300400x
  • Bhattacharya, A. A., Grüne, T., & Curry, S. (2000). Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin 1 1Edited by R. Huber. Journal of Molecular Biology, 303(5), 721–732. https://doi.org/10.1006/jmbi.2000.4158
  • Brownlee, M. (1991). Glycosylation products as toxic mediators of diabetic complications. Annual Review of Medicine, 42(1), 159–166. https://doi.org/10.1146/annurev.me.42.020191.001111
  • Carter, D. C., & Ho, J. X. (1994). Structure of serum albumin. Advances in Protein Chemistry, 45, 153–203. https://doi.org/10.1016/S0065-3233(08)60640-3
  • Castro-Alvarez, A., Costa, A., & Vilarrasa, J. (2017). The performance of several docking programs at reproducing protein–macrolide-like crystal structures. Molecules (Basel, Switzerland), 22(1), 136. https://doi.org/10.3390/molecules22010136
  • Chaves, O. A., Soares, M. A. G., & Campos de Oliveira, M. C. (2021). Monosaccharides interact weakly with human serum albumin. Insights for the functional perturbations on the binding capacity of albumin. Carbohydrate Research, 501, 108274. https://doi.org/10.1016/j.carres.2021.108274
  • Chen, X., Zhang, Y., & Zhang, J. Z. H. (2005). An efficient approach for ab initio energy calculation of biopolymers. The Journal of Chemical Physics, 122(18), 184105. https://doi.org/10.1063/1.1897382
  • Christensen, A. S., Kubař, T., Cui, Q., & Elstner, M. (2016). Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications. Chemical Reviews, 116(9), 5301–5337. https://doi.org/10.1021/acs.chemrev.5b00584
  • Collins, M. A., & Bettens, R. P. A. (2015). Energy-based molecular fragmentation methods. Chemical Reviews, 115(12), 5607–5642. https://doi.org/10.1021/cr500455b
  • Conev, A., Rigo, M. M., Devaurs, D., Fonseca, A. F., Kalavadwala, H., de Freitas, M. V., Clementi, C., Zanatta, G., Antunes, D. A., & Kavraki, L. E. (2023). EnGens: A computational framework for generation and analysis of representative protein conformational ensembles. Briefings in Bioinformatics, 24(4), 1-11. https://doi.org/10.1093/bib/bbad242
  • Dantas, D. S., Oliveira, J. I. N., Lima Neto, J. X., da Costa, R. F., Bezerra, E. M., Freire, V. N., Caetano, E. W. S., Fulco, U. L., & Albuquerque, E. L. (2015). Quantum molecular modelling of ibuprofen bound to human serum albumin. RSC Advances, 5(61), 49439–49450. https://doi.org/10.1039/C5RA04395F
  • Delley, B. (1990). An all-electron numerical method for solving the local density functional for polyatomic molecules. The Journal of Chemical Physics, 92(1), 508–517. https://doi.org/10.1063/1.458452
  • Delley, B. (2000). From molecules to solids with the DMol3 approach. The Journal of Chemical Physics, 113(18), 7756–7764. https://doi.org/10.1063/1.1316015
  • Ehrlich, S., Moellmann, J., & Grimme, S. (2013). Dispersion-corrected density functional theory for aromatic interactions in complex systems. Accounts of Chemical Research, 46(4), 916–926. https://doi.org/10.1021/ar3000844
  • Fanali, G., di Masi, A., Trezza, V., Marino, M., Fasano, M., & Ascenzi, P. (2012). Human serum albumin: From bench to bedside. Molecular Aspects of Medicine, 33(3), 209–290. https://doi.org/10.1016/j.mam.2011.12.002
  • Fox, S. J., Dziedzic, J., Fox, T., Tautermann, C. S., & Skylaris, C.-K. (2014). Density functional theory calculations on entire proteins for free energies of binding: Application to a model polar binding site. Proteins, 82(12), 3335–3346. https://doi.org/10.1002/prot.24686
  • França, V. L. B., Amaral, J. L., Martins, Y. A., Caetano, E. W. S., Brunaldi, K., & Freire, V. N. (2022). Characterization of the binding interaction between atrazine and human serum albumin: Fluorescence spectroscopy, molecular dynamics and quantum biochemistry. Chemico-Biological Interactions, 366, 110130. https://doi.org/10.1016/j.cbi.2022.110130
  • Ganesan, A., Coote, M. L., & Barakat, K. (2017). Molecular dynamics-driven drug discovery: Leaping forward with confidence. Drug Discovery Today, 22(2), 249–269. https://doi.org/10.1016/j.drudis.2016.11.001
  • Gelpi, J., Hospital, A., Goñi, J. R., Orozco, M. (2015). Molecular dynamics simulations: Advances and applications. Advances and Applications in Bioinformatics and Chemistry: AABC, 8, 37–47. https://doi.org/10.2147/AABC.S70333
  • Ghosh, R., & Kishore, N. (2022). Mechanistic physicochemical insights into glycation and drug binding by serum albumin: Implications in diabetic conditions. Biochimie, 193, 16–37. https://doi.org/10.1016/j.biochi.2021.10.008
  • Ghuman, J., Zunszain, P. A., Petitpas, I., Bhattacharya, A. A., Otagiri, M., & Curry, S. (2005). Structural basis of the drug-binding specificity of human serum albumin. Journal of Molecular Biology, 353(1), 38–52. https://doi.org/10.1016/j.jmb.2005.07.075
  • Gordon, M. S., Fedorov, D. G., Pruitt, S. R., & Slipchenko, L. V. (2012). Fragmentation methods: A route to accurate calculations on large systems. Chemical Reviews, 112(1), 632–672. https://doi.org/10.1021/cr200093j
  • Grinter, S., & Zou, X. (2014). Challenges, applications, and recent advances of protein-ligand docking in structure-based drug design. Molecules (Basel, Switzerland), 19(7), 10150–10176. https://doi.org/10.3390/molecules190710150
  • Hamilton, J. A. (2013). NMR reveals molecular interactions and dynamics of fatty acid binding to albumin. Biochimica Et Biophysica Acta, 1830(12), 5418–5426. https://doi.org/10.1016/j.bbagen.2013.08.002
  • Hand, D. J., McLachlan, G. J., & Basford, K. E. (1989). Mixture models: Inference and applications to clustering. Applied Statistics, 38(2), 384. https://doi.org/10.2307/2348072
  • He, X., & Zhang, J. Z. H. (2005). A new method for direct calculation of total energy of protein. The Journal of Chemical Physics, 122(3), 31103. https://doi.org/10.1063/1.1849132
  • Hollingsworth, S. A., & Dror, R. O. (2018). Molecular dynamics simulation for all. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
  • Hu, X., Zeng, Z., Zhang, J., Wu, D., Li, H., & Geng, F. (2023). Molecular dynamics simulation of the interaction of food proteins with small molecules. Food Chemistry, 405(Pt A), 134824. https://doi.org/10.1016/j.foodchem.2022.134824
  • Jaña, G. A., Mendoza, F., Osorio, M. I., Alderete, J. B., Fernandes, P. A., Ramos, M. J., & Jiménez, V. A. (2018). A QM/MM approach on the structural and stereoelectronic factors governing glycosylation by GTF-SI from Streptococcus mutans. Organic & Biomolecular Chemistry, 16(14), 2438–2447. https://doi.org/10.1039/C8OB00284C
  • Jiang, N., Ma, J., & Jiang, Y. (2006). Electrostatic field-adapted molecular fractionation with conjugated caps for energy calculations of charged biomolecules. The Journal of Chemical Physics, 124(11), 114112. https://doi.org/10.1063/1.2178796
  • Jones, R. O. (2015). Density functional theory: Its origins, rise to prominence, and future. Reviews of Modern Physics, 87(3), 897–923. https://doi.org/10.1103/RevModPhys.87.897
  • Joseph, K. S., & Hage, D. S. (2010). The effects of glycation on the binding of human serum albumin to warfarin and l-tryptophan. Journal of Pharmaceutical and Biomedical Analysis, 53(3), 811–818. https://doi.org/10.1016/j.jpba.2010.04.035
  • Khalifah, R. G., Baynes, J. W., & Hudson, B. G. (1999). Amadorins: Novel post-amadori inhibitors of advanced glycation reactions. Biochemical and Biophysical Research Communications, 257(2), 251–258. https://doi.org/10.1006/bbrc.1999.0371
  • Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. Nature Reviews. Drug Discovery, 3(11), 935–949. https://doi.org/10.1038/nrd1549
  • Klamt, A., & Schüürmann, G. (1993). COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society, Perkin Transactions 2. (5), 799–805. https://doi.org/10.1039/P29930000799
  • Krenzel, E. S., Chen, Z., & Hamilton, J. A. (2013). Correspondence of fatty acid and drug binding sites on human serum albumin: A two-dimensional nuclear magnetic resonance study. Biochemistry, 52(9), 1559–1567. https://doi.org/10.1021/bi301458b
  • Li, J., Zhu, X., Yang, C., & Shi, R. (2010). Characterization of the binding of angiotensin II receptor blockers to human serum albumin using docking and molecular dynamics simulation. Journal of Molecular Modeling, 16(4), 789–798. https://doi.org/10.1007/s00894-009-0612-0
  • Liu, J., & Herbert, J. M. (2016). Pair–pair approximation to the generalized many-body expansion: An alternative to the four-body expansion for ab initio prediction of protein energetics via molecular fragmentation. Journal of Chemical Theory and Computation, 12(2), 572–584. https://doi.org/10.1021/acs.jctc.5b00955
  • Liu, Y., Yang, X., Gan, J., Chen, S., Xiao, Z.-X., & Cao, Y. (2022). CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Research, 50(W1), W159–W164. https://doi.org/10.1093/nar/gkac394
  • Lv, Y., Liang, Q., Li, Y., Liu, X., Zhang, D., & Li, X. (2022). Study of the binding mechanism between hydroxytyrosol and bovine serum albumin using multispectral and molecular docking. Food Hydrocolloids. 122, 107072. https://doi.org/10.1016/j.foodhyd.2021.107072
  • Malik, V. S., & Hu, F. B. (2015). Fructose and cardiometabolic health. Journal of the American College of Cardiology, 66(14), 1615–1624. https://doi.org/10.1016/j.jacc.2015.08.025
  • Mardirossian, N., & Head-Gordon, M. (2017). Thirty years of density functional theory in computational chemistry: An overview and extensive assessment of 200 density functionals. Molecular Physics, 115(19), 2315–2372. https://doi.org/10.1080/00268976.2017.1333644
  • Martínez-Rosell, G., Giorgino, T., & De Fabritiis, G. (2017). PlayMolecule ProteinPrepare: A Web Application for Protein Preparation for Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 57(7), 1511–1516. https://doi.org/10.1021/acs.jcim.7b00190
  • Maruyama, Y., Igarashi, R., Ushiku, Y., & Mitsutake, A. (2023). Analysis of protein folding simulation with moving root mean square deviation. Journal of Chemical Information and Modeling, 63(5), 1529–1541. https://doi.org/10.1021/acs.jcim.2c01444
  • Moeinpour, F., Mohseni-Shahri, F. S., Malaekeh-Nikouei, B., & Nassirli, H. (2016). Investigation into the interaction of losartan with human serum albumin and glycated human serum albumin by spectroscopic and molecular dynamics simulation techniques: A comparison study. Chemico-Biological Interactions, 257, 4–13. https://doi.org/10.1016/j.cbi.2016.07.025
  • Nasiri, R., Bahrami, H., Zahedi, M., Moosavi-Movahedi, A. A., & Sattarahmady, N. (2010). A theoretical elucidation of glucose interaction with HSA’s domains. Journal of Biomolecular Structure & Dynamics, 28(2), 211–226. https://doi.org/10.1080/07391102.2010.10507354
  • Nocedal, J., & Wright, S. (1960). Numerical optimization. ITM web of conferences itmconflibrary of congress cataloging-in-publication, second.
  • Pan, X.-L., Liu, W., & Liu, J.-Y. (2013). Mechanism of the glycosylation step catalyzed by human α-galactosidase: A QM/MM metadynamics study. The Journal of Physical Chemistry. B, 117(2), 484–489. https://doi.org/10.1021/jp308747c
  • Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., DeBolt, S., Ferguson, D., Seibel, G., & Kollman, P. (1995). AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications, 91(1-3), 1–41. https://doi.org/10.1016/0010-4655(95)00041-D
  • Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
  • Peters, T. (1995). Ligand binding by albumin. In All about albumin (pp. 76–132). Elsevier. https://doi.org/10.1016/B978-012552110-9/50005-2
  • Petitpas, I., Grüne, T., Bhattacharya, A. A., & Curry, S. (2001). Crystal structures of human serum albumin complexed with monounsaturated and polyunsaturated fatty acids. Journal of Molecular Biology, 314(5), 955–960. https://doi.org/10.1006/jmbi.2000.5208
  • Pongprayoon, P., & Gleeson, M. P. (2014). Probing the binding site characteristics of HSA: A combined molecular dynamics and cheminformatics investigation. Journal of Molecular Graphics & Modelling, 54, 164–173. https://doi.org/10.1016/j.jmgm.2014.10.007
  • Pongprayoon, P., & Mori, T. (2018). The critical role of dimer formation in monosaccharides binding to human serum albumin. Physical Chemistry Chemical Physics: PCCP, 20(5), 3249–3257. https://doi.org/10.1039/C7CP06324E
  • Potter, E. D., Herek, J. L., Pedersen, S., Liu, Q., & Zewail, A. H. (1992). Femtosecond laser control of a chemical reaction. Nature, 355(6355), 66–68. https://doi.org/10.1038/355066a0
  • Qi, X., & Tester, R. F. (2019). Fructose, galactose and glucose – In health and disease. Clinical Nutrition ESPEN, 33, 18–28. https://doi.org/10.1016/j.clnesp.2019.07.004
  • Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., & Skiff, W. M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25), 10024–10035. https://doi.org/10.1021/ja00051a040
  • Reynolds, T. M. (1963). Chemistry of Nonenzymic Browning I. The Reaction between Aldoses and Amines. Advances in Food Research, 12, 1–52. https://doi.org/10.1016/S0065-2628(08)60005-1
  • Saha, A., & Raghavachari, K. (2015). Analysis of different fragmentation strategies on a variety of large peptides: implementation of a low level of theory in fragment-based methods can be a crucial factor. Journal of Chemical Theory and Computation, 11(5), 2012–2023. https://doi.org/10.1021/ct501045s
  • Sattarahmady, N., Moosavi-Movahedi, A. A., Ahmad, F., Hakimelahi, G. H., Habibi-Rezaei, M., Saboury, A. A., & Sheibani, N. (2007). Formation of the molten globule-like state during prolonged glycation of human serum albumin. Biochimica Et Biophysica Acta, 1770(6), 933–942. https://doi.org/10.1016/j.bbagen.2007.02.001
  • Sergio, L. M., Martins, Y. A., Amaral, J. L., França, V. L. B., de Freitas, C. F., Neto, A. M., Hioka, N., Ravanelli, M. I., Mareze-Costa, C., Claudio da Costa, S., Freire, V. N., & Brunaldi, K. (2021). Molecular insight on the binding of stevia glycosides to bovine serum albumin. Chemico-Biological Interactions, 344, 109526. https://doi.org/10.1016/j.cbi.2021.109526
  • Shamsi, A., Ahmed, A., & Bano, B. (2018). Probing the interaction of anticancer drug temsirolimus with human serum albumin: Molecular docking and spectroscopic insight. Journal of Biomolecular Structure & Dynamics, 36(6), 1479–1489. https://doi.org/10.1080/07391102.2017.1326320
  • Simard, J. R., Zunszain, P. A., Hamilton, J. A., & Curry, S. (2006). Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis. Journal of Molecular Biology, 361(2), 336–351. https://doi.org/10.1016/j.jmb.2006.06.028
  • Sittiwanichai, S., Japrung, D., Mori, T., & Pongprayoon, P. (2023). Structural and dynamic alteration of glycated human serum albumin in schiff base and amadori adducts: A molecular simulation study. The Journal of Physical Chemistry. B, 127(23), 5230–5240. https://doi.org/10.1021/acs.jpcb.3c02048
  • Smith, G. R., & Sternberg, M. J. E. (2002). Prediction of protein–protein interactions by docking methods. Current Opinion in Structural Biology, 12(1), 28–35. https://doi.org/10.1016/S0959-440X(02)00285-3
  • Söderhjelm, P., Aquilante, F., & Ryde, U. (2009). Calculation of protein − ligand interaction energies by a fragmentation approach combining high-level quantum chemistry with classical many-body effects. The Journal of Physical Chemistry. B, 113(32), 11085–11094. https://doi.org/10.1021/jp810551h
  • Sousa, B. L., Barroso-Neto, I. L., Oliveira, E. F., Fonseca, E., Lima-Neto, P., Ladeira, L. O., & Freire, V. N. (2016). Explaining RANKL inhibition by OPG through quantum biochemistry computations and insights into peptide-design for the treatment of osteoporosis. RSC Advances, 6(88), 84926–84942. https://doi.org/10.1039/C6RA16712H
  • Sudlow, G., Birkett, D. J., & Wade, D. N. (1976). Further characterization of specific drug binding sites on human serum albumin. American Society for Pharmacology and Experimental Therapeutics, 12, 1052–1061.
  • Szkudlarek, A., Sułkowska, A., Maciążek-Jurczyk, M., Chudzik, M., & Równicka-Zubik, J. (2016). Effects of non-enzymatic glycation in human serum albumin. Spectroscopic analysis. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 152, 645–653. https://doi.org/10.1016/j.saa.2015.01.120
  • Tayeh, N., Rungassamy, T., & Albani, J. R. (2009). Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins. Journal of Pharmaceutical and Biomedical Analysis, 50(2), 107–116. https://doi.org/10.1016/j.jpba.2009.03.015
  • Thiel, W. (2014). Semiempirical quantum–chemical methods. WIREs Computational Molecular Science, 4(2), 145–157. https://doi.org/10.1002/wcms.1161
  • Thornalley, P. J., Langborg, A., & Minhas, H. S. (1999). Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochemical Journal, 344(1), 109–116. https://doi.org/10.1042/bj3440109
  • Tkatchenko, A., & Scheffler, M. (2009). Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data. Physical Review Letters, 102(7), 073005. https://doi.org/10.1103/PhysRevLett.102.073005
  • Trozzi, F., Wang, X., & Tao, P. (2021). UMAP as a dimensionality reduction tool for molecular dynamics simulations of biomacromolecules: A comparison study. The Journal of Physical Chemistry. B, 125(19), 5022–5034. https://doi.org/10.1021/acs.jpcb.1c02081
  • Trüeb, B., Holenstein, C. G., Fischer, R. W., & Winterhalter, K. H. (1980). Nonenzymatic glycosylation of proteins. A warning. The Journal of Biological Chemistry, 255(14), 6717–6720. https://doi.org/10.1016/S0021-9258(18)43630-7
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2009). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367
  • Wang, W., Gan, N., Sun, Q., Wu, D., Gan, R., Zhang, M., Tang, P., & Li, H. (2019). Study on the interaction of ertugliflozin with human serum albumin in vitro by multispectroscopic methods, molecular docking, and molecular dynamics simulation. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 219, 83–90. https://doi.org/10.1016/j.saa.2019.04.047
  • Wang, X., Liu, J., Zhang, J. Z. H., & He, X. (2013). Electrostatically embedded generalized molecular fractionation with conjugate caps method for full quantum mechanical calculation of protein energy. The Journal of Physical Chemistry. A, 117(32), 7149–7161. https://doi.org/10.1021/jp400779t
  • Wang, Y., Yu, H., Shi, X., Luo, Z., Lin, D., & Huang, M. (2013). Structural mechanism of ring-opening reaction of glucose by human serum albumin. The Journal of Biological Chemistry, 288(22), 15980–15987. https://doi.org/10.1074/jbc.M113.467027
  • Wani, T. A., Bakheit, A. H., Al-Majed, A. A., Altwaijry, N., Baquaysh, A., Aljuraisy, A., & Zargar, S. (2021). Binding and drug displacement study of colchicine and bovine serum albumin in presence of azithromycin using multispectroscopic techniques and molecular dynamic simulation. Journal of Molecular Liquids, 333, 115934. https://doi.org/10.1016/j.molliq.2021.115934
  • Yang, F., Bian, C., Zhu, L., Zhao, G., Huang, Z., & Huang, M. (2007). Effect of human serum albumin on drug metabolism: Structural evidence of esterase activity of human serum albumin. Journal of Structural Biology, 157(2), 348–355. https://doi.org/10.1016/j.jsb.2006.08.015
  • Zaman, A., Arif, Z., & Alam, K. (2018). Fructose-human serum albumin interaction undergoes numerous biophysical and biochemical changes before forming AGEs and aggregates.International Journal of Biological Macromolecules, 109, 896–906. https://doi.org/10.1016/j.ijbiomac.2017.11.069
  • Zhang, D. W., & Zhang, J. Z. H. (2003). Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein–molecule interaction energy. The Journal of Chemical Physics, 119(7), 3599–3605. https://doi.org/10.1063/1.1591727
  • Zhang, Y., Lee, P., Liang, S., Zhou, Z., Wu, X., Yang, F., & Liang, H. (2015). Structural basis of non-steroidal anti-inflammatory drug diclofenac binding to human serum albumin. Chemical Biology & Drug Design, 86(5), 1178–1184. https://doi.org/10.1111/cbdd.12583
  • Zhao, H., & Caflisch, A. (2015). Molecular dynamics in drug design. European Journal of Medicinal Chemistry, 91, 4–14. https://doi.org/10.1016/j.ejmech.2014.08.004
  • Zunszain, P. A., Ghuman, J., Komatsu, T., Tsuchida, E., & Curry, S. (2003). Crystal structural analysis of human serum albumin complexed with hemin and fatty acid. BMC Structural Biology, 3(1), 6. https://doi.org/10.1186/1472-6807-3-6
  • Zunszain, P. A., Ghuman, J., McDonagh, A. F., & Curry, S. (2008). Crystallographic analysis of human serum albumin complexed with 4Z,15E-Bilirubin-IXα. Journal of Molecular Biology, 381(2), 394–406. https://doi.org/10.1016/j.jmb.2008.06.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.