233
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Attenuation of Type IV pili activity by natural products

, , , , , , , & show all
Received 08 Nov 2023, Accepted 20 Jan 2024, Published online: 02 Feb 2024

References

  • Alam, S., Sarker, M., Sultana, T., Chowdhury, M., Rashid, M., Chaity, N., Zhao, C., Xiao, J., Hafez, E., Khan, S., & Mohamed, I. (2022). Antidiabetic phytochemicals from medicinal plants: Prospective candidates for new drug discovery and development. Frontiers in Endocrinology, 13, 800714. https://doi.org/10.3389/fendo.2022.800714
  • Alizadeh, S., & Ebrahimzadeh, M. (2022). Quercetin derivatives: Drug design, development, and biological activities, a review. European Journal of Medicinal Chemistry, 229(, 114068. https://doi.org/10.1016/j.ejmech.2021.114068
  • Mohd Zaid, N. A., Sekar, M., Bonam, S. R., Gan, S. H., Lum, P. T., Begum, M. Y., Mat Rani, N. N. I., Vaijanathappa, J., Wu, Y. S., Subramaniyan, V., Fuloria, N. K., & Fuloria, S. (2022). Promising natural products in new drug design, development, and therapy for skin disorders: An overview of scientific evidence and understanding their mechanism of action. 6(16), 23-66. https://doi.org/10.2147/DDDT.S326332.
  • Amsterdam, D. (1996). Susceptibility testing of antimicrobials in liquid media. Antibiotics in laboratory medicine (6th ed.). Williams & Wilkins.
  • Aubey, F., Corre, J. P., Kong, Y., Xu, X., Obino, D., Goussard, S., Lapeyrere, C., Souphron, J., Couturier, C., Renard, S., & Duménil, G. (2019). Inhibitors of the Neisseria meningitidis PilF ATPase provoke type IV pilus disassembly. Proceedings of the National Academy of Sciences of the United States of America, 116(17), 8481–8486. https://doi.org/10.1073/pnas.1817757116
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank helen. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • BIOVIA Discovery Studio Visualizer. (2020). https://discover.3ds.com/discovery-studio-visualizer-download
  • Burrows, L. L. (2012). Pseudomonas aeruginosa twitching motility: Type IV pili in action. Annual Review of Microbiology, 66(1), 493–520. https://doi.org/10.1146/annurev-micro-092611-150055
  • Chin, Y. W., Balunas, M. J., Chai, H. B., & Kinghorn, A. D. (2006). Drug discovery from natural sources. The AAPS Journal, 8(2), E239–E253. https://doi.org/10.1007/bf02854894
  • Chung, I. Y., Jang, H. J., Bae, H. W., & Cho, Y. H. (2014). A phage protein that inhibits the bacterial ATPase required for type IV pilus assembly. Proceedings of the National Academy of Sciences of the United States of America, 111(31), 11503–11508. https://doi.org/10.1073/pnas.1403537111
  • Chung, I. Y., Kim, B. O., Han, J. H., Park, J., Kang, H. K., Park, Y., & Cho, Y. H. (2021). A phage protein-derived antipathogenic peptide that targets type IV pilus assembly. Virulence, 12(1), 1377–1387. https://doi.org/10.1080/21505594.2021.1926411
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • de Sousa, T., Hébraud, M., Alves, O., Costa, E., Maltez, L., Pereira, J. E., Martins, Â., Igrejas, G., & Poeta, P. (2023). Study of antimicrobial resistance, biofilm formation, and motility of Pseudomonas aeruginosa derived from urine samples. Microorganisms, 11(5), 1345. https://doi.org/10.3390/microorganisms11051345
  • Denis, K., Le Bris, M., Le Guennec, L., Barnier, J. P., Faure, C., Gouge, A., Bouzinba-Ségard, H., Jamet, A., Euphrasie, D., Durel, B., Barois, N., Pelissier, P., Morand, P. C., Coureuil, M., Lafont, F., Join-Lambert, O., Nassif, X., & Bourdoulous, S. (2019). Targeting Type IV pili as an antivirulence strategy against invasive meningococcal disease. Nature Microbiology, 4(6), 972–984. https://doi.org/10.1038/s41564-019-0395-8
  • Dye, K. J., Vogelaar, N. J., O’Hara, M., Sobrado, P., Santos, W., Carlier, P. R., & Yang, Z. (2022). Discovery of two inhibitors of the type IV pilus assembly ATPase PilB as potential antivirulence compounds. Microbiology Spectrum, 10(6), e0387722. https://doi.org/10.1128/spectrum.03877-22
  • Dye, K. J., Vogelaar, N. J., Sobrado, P., & Yang, Z. (2021). High-throughput screen for inhibitors of the type IV pilus assembly ATPase PilB. mSphere, 6(2), e00129-21. https://doi.org/10.1128/mSphere.00129-21
  • Dye, K. J., & Yang, Z. (2020). Cyclic-di-GMP and ADP bind to separate domains of PilB as mutual allosteric effectors. The Biochemical Journal, 477(1), 213–226. https://doi.org/10.1042/BCJ20190809
  • Ghazaei, C. (2021). Anti-virulence therapy against bacterial infections: Mechanisms of action and challenges. Journal of Kermanshah University of Medical Sciences, 25(3), 1-9. https://doi.org/10.5812/jkums.111808
  • Giacoppo, J. O. S., França, T. C. C., Kuča, K., Cunha, E. F. F., Abagyan, R., Mancini, D. T., Ramalho, T. C., Giacoppo, J. O. S., França, T. C. C., Kuča, K., Cunha, E. F. F., Abagyan, R., Mancini, D. T., & Ramalho, T. C. (2015). Molecular modeling and in vitro reactivation study between the oxime BI-6 and acetylcholinesterase inhibited by different nerve agents. Journal of Biomolecular Structure & Dynamics, 33(9), 2048–2058. https://doi.org/10.1080/07391102.2014.989408
  • Giltner, C. L., Nguyen, Y., & Burrows, L. L. (2012). Type IV pilin proteins: Versatile molecular modules. Microbiology and Molecular Biology Reviews, 76(4), 740–772. https://doi.org/10.1128/mmbr.00035-12
  • Gonçalves, M. A., Santos, L. S., Prata, D. M., Peixoto, F. C., Elaine, F. F., & Teodorico, C. (2017). Optimal wavelet signal compression as an efficient alternative to investigate molecular dynamics simulations: Application to thermal and solvent effects of MRI probes. Theoretical Chemistry Accounts, 136(1), 1–13. https://doi.org/10.1007/s00214-016-2037-z
  • Gonçalves, M., Gonçalves, A., Franca, T., Santana, M., da Cunha, E., & Ramalho, T. (2022). Improved protocol for the selection of structures from molecular dynamics of organic systems in solution: The value of investigating different wavelet families. Journal of Chemical Theory and Computation, 18(10), 5810–5818. https://doi.org/10.1021/acs.jctc.2c00593
  • Hong, J. (2011). Role of natural product diversity in chemical biology. Current Opinion in Chemical Biology, 15(3), 350–354. https://doi.org/10.1016/j.cbpa.2011.03.004
  • Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., De Groot, B. L., Grubmüller, H., & MacKerell, A. D. (2016). CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nature Methods, 14(1), 71–73. https://doi.org/10.1038/nmeth.4067
  • Hydergine, M. R. (1985). Interaction with neurotransmitter Systems in the central nervous system (In: Gaitz). Springer New York. https://doi.org/10.1007/978-1-4612-5058-6_30
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Kerr, K. G., & Snelling, A. M. (2009). Pseudomonas aeruginosa: A formidable and ever-present adversary. The Journal of Hospital Infection, 73(4), 338–344. https://doi.org/10.1016/j.jhin.2009.04.020
  • Kim, S., Lee, J., Jo, S., Brooks, C. L., Lee, H. S., & Im, W. (2017). CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. Journal of Computational Chemistry, 38(21), 1879–1886. https://doi.org/10.1002/jcc.24829
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Leighton, T. L., Buensuceso, R. N. C., Howell, P. L., & Burrows, L. L. (2015). Biogenesis of Pseudomonas aeruginosa type IV pili and regulation of their function. Environmental Microbiology, 17(11), 4148–4163. https://doi.org/10.1111/1462-2920.12849
  • Li, J. W. H., & Vederas, J. C. (2009). Drug discovery and natural products: End of an era or an endless frontier? Science (New York, NY), 325(5937), 161–165. https://doi.org/10.1126/science.1168243
  • Lin, L., Chuan, L., Subhra, S., Jie, Z., Shawn, W., Zhe, Z., Lin, W., Nicholas, S., Marharyta, P., & Emil, A. (2012). DelPhi: A comprehensive suite for DelPhi software and associated resources. BMC Biophysics, 5(1), 9. https://doi.org/10.1186/2046-1682-5-9
  • Liu, C. L., Xue, K., Yang, Y., Liu, X., Li, Y., Lee, T. S., Bai, Z., & Tan, T. (2022). Metabolic engineering strategies for sesquiterpene production in microorganism. Critical Reviews in Biotechnology, 42(1), 73–92. https://doi.org/10.1080/07388551.2021.1924112
  • Liu, H., & Hou, T. (2016). CaFE: A tool for binding affinity prediction using end-point free energy methods. Bioinformatics (Oxford, England), 32(14), 2216–2218. https://doi.org/10.1093/bioinformatics/btw215
  • Marra, A. (2004). Can virulence factors be viable antibacterial targets? Expert Review of Anti-Infective Therapy, 2(1), 61–72. https://doi.org/10.1586/14787210.2.1.61
  • Mattick, J. S. (2002). Type IV pili and twitching motility. Annual Review of Microbiology, 56(1), 289–314. https://doi.org/10.1146/annurev.micro.56.012302.160938
  • Mullangi, R., Ahlawat, P., & Srinivas, N. R. (2010). Irinotecan and its active metabolite, SN-38: Review of bioanalytical methods and recent update from clinical pharmacology perspectives. Biomedical Chromatography, 24(1), 104–123. https://doi.org/10.1002/bmc.1345
  • Müsken, M., Di Fiore, S., Römling, U., & Häussler, S. (2010). A 96-well-plateg-based optical method for the quantitative and qualitative evaluation of Pseudomonas aeruginosa biofilm formation and its application to susceptibility testing. Nature Protocols, 5(8), 1460–1469. https://doi.org/10.1038/nprot.2010.110
  • Ozcan, A., Keskin, O., Sariyar Akbulut, B., & Ozbek, P. (2023). Piperidine-based natural products targeting Type IV pili antivirulence: A computational approach. Journal of Molecular Graphics & Modelling, 119, 108382. https://doi.org/10.1016/j.jmgm.2022.108382
  • Panigrahi, S. K., & Desiraju, G. R. (2007). Strong and weak hydrogen bonds in the protein-ligand interface. Proteins, 67(1), 128–141. https://doi.org/10.1002/prot.21253
  • Parai, D., Banerjee, M., Dey, P., Chakraborty, A., Islam, E., & Mukherjee, S. K. (2018). Effect of reserpine on Pseudomonas aeruginosa quorum sensing mediated virulence factors and biofilm formation. Biofouling, 34(3), 320–334. https://doi.org/10.1080/08927014.2018.1437910
  • Parai, D., Banerjee, M., Dey, P., & Mukherjee, S. K. (2020). Reserpine attenuates biofilm formation and virulence of Staphylococcus aureus. Microbial Pathogenesis, 138, 103790. https://doi.org/10.1016/j.micpath.2019.103790
  • Phillips, J. C., Hardy, D. J., Maia, J. D. C., Stone, J. E., Ribeiro, J. V., Bernardi, R. C., Buch, R., Fiorin, G., Hénin, J., Jiang, W., McGreevy, R., Melo, M. C. R., Radak, B. K., Skeel, R. D., Singharoy, A., Wang, Y., Roux, B., Aksimentiev, A., Luthey-Schulten, Z., … Tajkhorshid, E. (2020). Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of Chemical Physics, 153(4), 1–33. https://doi.org/10.1063/5.0014475
  • Pihan, E., Colliandre, L., Guichou, J., Douguet, D., Moléculaire, D. P., Umr, C., Nice, U., Antipolis, S., Structurale, C. D. B., Inserm, U., & Université, C. U. M. R. (2012). e-Drug3D : 3D structure collections dedicated to drug repurposing and fragment-based drug design. Bioinformatics (Oxford, England), 28(11), 1540–1541. https://doi.org/10.1093/bioinformatics/bts186
  • Planet, P. (2023). Pseudomonas aeruginosa. Principles and practice of pediatric infectious diseases (pp. 884–889). Elsevier. https://doi.org/10.1016/B978-0-323-75608-2.00155-5
  • Ramachandran, G. N. (1963). Protein structure and crystallography. Science (New York, NY), 141(3577), 288–291. https://doi.org/10.1126/science.141.3577.288
  • Rasko, D. A., & Sperandio, V. (2010). Anti-virulence strategies to combat bacteria-mediated disease. Nature Reviews. Drug Discovery, 9(2), 117–128. https://doi.org/10.1038/nrd3013
  • Sabrina, M., & Petra, D. (2016). Anti-virulence strategies to target bacterial infections sabrina. Current topics in microbiology and immunology (Vol. 398). Springer Verlag. https://doi.org/10.1007/82_2015_490
  • Schmidt, A. K., Fitzpatrick, A. D., Schwartzkopf, C. M., Faith, D. R., Jennings, L. K., Coluccio, A., Hunt, D. J., Michaels, L. A., Hargil, A., Chen, Q., Bollyky, P. L., Dorward, D. W., Wachter, J., Rosa, P. A., Maxwell, K. L., & Secor, P. R. (2022). A filamentous bacteriophage protein inhibits type IV pili to prevent superinfection of Pseudomonas aeruginosa. mBio, 13(1), e0244121. https://doi.org/10.1128/mbio.02441-21
  • Shah, M., Taylor, V. L., Bona, D., Tsao, Y., Stanley, S. Y., Pimentel-Elardo, S. M., McCallum, M., Bondy-Denomy, J., Howell, P. L., Nodwell, J. R., Davidson, A. R., Moraes, T. F., & Maxwell, K. L. (2021). A phage-encoded anti-activator inhibits quorum sensing in Pseudomonas aeruginosa. Molecular Cell, 81(3), 571–583.e6. https://doi.org/10.1016/j.molcel.2020.12.011
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Tuon, F. F., Dantas, L. R., Suss, P. H., & Tasca Ribeiro, V. S. (2022). Pathogenesis of the Pseudomonas aeruginosa biofilm: A review. Pathogens (Basel, Switzerland), 11(3), 300. https://doi.org/10.3390/pathogens11030300
  • Turnbull, L., & Whitchurch, C. B. (2014). Motility assay : Twitching motility. Methods in Molecular Biology. 1149, 73–86. https://doi.org/10.1007/978-1-4939-0473-0_9
  • Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Žídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., … Velankar, S. (2022). AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439–D444. https://doi.org/10.1093/nar/gkab1061
  • Vashisth, M., Jaglan, A. B., Yashveer, S., Sharma, P., Bardajatya, P., Virmani, N., Bera, B. C., Vaid, R. K., & Anand, T. (2023). Development and evaluation of bacteriophage cocktail to eradicate biofilms formed by an extensively drug-resistant (XDR) Pseudomonas aeruginosa. Viruses, 15(2), 427. https://doi.org/10.3390/v15020427
  • Ventola, C. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. Comprehensive Biochemistry, 40(4), 277. https://doi.org/10.1016/B978-1-4831-9711-1.50022-3
  • Volkamer, A., Kuhn, D., Grombacher, T., Rippmann, F., & Rarey, M. (2012). Combining global and local measures for structure-based druggability predictions. Journal of Chemical Information and Modeling, 52(2), 360–372. https://doi.org/10.1021/ci200454v
  • Whitchurch, C. B., Erova, T. E., Emery, J. A., Sargent, J. L., Harris, J. M., Semmler, A. B. T., Young, M. D., Mattick, J. S., & Wozniak, D. J. (2002). Phosphorylation of the Pseudomonas aeruginosa response regulator AlgR is essential for type IV fimbria-mediated twitching motility. Journal of Bacteriology, 184(16), 4544–4554. https://doi.org/10.1128/JB.184.16.4544-4554.2002
  • Whitchurch, C. B., Leech, A. J., Young, M. D., Kennedy, D., Sargent, J. L., Bertrand, J. J., Semmler, A. B. T., Mellick, A. S., Martin, P. R., Alm, R. A., Hobbs, M., Beatson, S. A., Huang, B., Nguyen, L., Commolli, J. C., Engel, J. N., Darzins, A., & Mattick, J. S. (2004). Characterization of a complex chemosensory signal transduction system which controls twitching motility in Pseudomonas aeruginosa. Molecular Microbiology, 52(3), 873–893. https://doi.org/10.1111/j.1365-2958.2004.04026.x
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35, W407–410. https://doi.org/10.1093/nar/gkm290
  • Xu, A., Zhang, M., Du, W., Wang, D., & Ma, L. Z. (2021). A molecular mechanism for how sigma factor AlgT and transcriptional regulator AmrZ inhibit twitching motility in Pseudomonas aeruginosa. Environmental Microbiology, 23(2), 572–587. https://doi.org/10.1111/1462-2920.14985
  • Xu, Z., Ji, L., Tang, W., Guo, L., Gao, C., Chen, X., Liu, J., Hu, G., & Liu, L. (2022). Metabolic engineering of Streptomyces to enhance the synthesis of valuable natural products. Engineering Microbiology, 2(2), 100022. https://doi.org/10.1016/j.engmic.2022.100022
  • Yin, R., Cheng, J., Wang, J., Li, P., & Lin, J. (2022). Treatment of Pseudomonas aeruginosa infectious biofilms: Challenges and strategies. Frontiers in Microbiology, 13, 955286. https://doi.org/10.3389/fmicb.2022.955286

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.