119
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Identifying inflammation-related targets of natural lactones using network pharmacology, molecular modeling and in vitro approaches

ORCID Icon, , , & ORCID Icon
Received 25 Nov 2023, Accepted 20 Jan 2024, Published online: 09 Feb 2024

References

  • A. G., Agundez, J. L., Gonzalez-Alvarez, D. A., Vega-Rodriguez, M. E., Botello, & Garcia-Martin, E. (2014). Gene variants and haplotypes modifying transcription factor binding sites in the human cyclooxygenase 1 and 2 (PTGS1 and PTGS2) genes. Current Drug Metabolism, 15(2), 182–195. https://doi.org/10.2174/138920021502140327180336
  • Adamik, J., Wang, K. Z. Q., Unlu, S., Su, A.-J A., Tannahill, G. M., Galson, D. L., O'Neill, L. A., & Auron, P. E. (2013). Distinct mechanisms for induction and tolerance regulate the immediate early genes encoding interleukin 1β and tumor necrosis factor α. PloS One, 8(8), e70622. https://doi.org/10.1371/journal.pone.0070622
  • Ahmad, A., Abuzinadah, M. F., Alkreathy, H. M., Banaganapalli, B., & Mujeeb, M. (2018). Ursolic acid rich Ocimum sanctum L leaf extract loaded nanostructured lipid carriers ameliorate adjuvant induced arthritis in rats by inhibition of COX-1, COX-2, TNF-α and IL-1: Pharmacological and docking studies. PloS One, 13(3), e0193451. https://doi.org/10.1371/journal.pone.0193451
  • Ahmed, A. U. (2011). An overview of inflammation: Mechanism and consequences. Frontiers in Biology, 6(4), 274–281. https://doi.org/10.1007/s11515-011-1123-9
  • Alexanian, A., & Sorokin, A. (2017). Cyclooxygenase 2: Protein-protein interactions and posttranslational modifications. Physiological Genomics, 49(11), 667–681. https://doi.org/10.1152/physiolgenomics.00086.2017
  • Andersen, V., Holst, R., Kopp, T. I., Tjønneland, A., & Vogel, U. (2013). Interactions between diet, lifestyle and IL10, IL1B, and PTGS2/COX-2 gene polymorphisms in relation to risk of colorectal cancer in a Prospective Danish Case-Cohort Study. PloS One, 8(10), e78366. https://doi.org/10.1371/journal.pone.0078366
  • Asthagiri, D., Neal, B. L., & Lenhoff, A. M. (1999). Calculation of short-range interactions between proteins. Biophysical Chemistry, 78(3), 219–231. https://doi.org/10.1016/s0301-4622(99)00028-9
  • Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W. H., Pagès, F., Trajanoski, Z., & Galon, J. (2009). ClueGO: A cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics (Oxford, England), 25(8), 1091–1093. eng. https://doi.org/10.1093/bioinformatics/btp101
  • Blaukat, A. (2007). Src Kinase. In: Enna SJ, Bylund DB, editors. xPharm: The Comprehensive Pharmacology Reference. Elsevier. p. 1–14.
  • Boraschi, D., Italiani, P., Weil, S., & Martin, M. U. (2018). The family of the interleukin-1 receptors. Immunological Reviews, 281(1), 197–232. https://doi.org/10.1111/imr.12606
  • Chandran, U., Mehendale, N., Patil, S., Chaguturu, R., & Patwardhan, B. (2017). Chapter 5 - Network Pharmacology. In: Patwardhan B, Chaguturu R, editors. Innovative Approaches in Drug Discovery. Academic Press. p. 127–164.
  • Chaturvedi, D. (2019). Chapter 6 - Recent developments in the anti-inflammatory potential of sesquiterpene lactones and their semisynthetic analogs. In: Brahmachari G, editor. Discovery and Development of Anti-Inflammatory Agents from Natural Products. Elsevier. p. 185–205.
  • Chen, M., Wang, L., Li, M., Budai, M. M., & Wang, J. (2022). Mitochondrion-mediated cell death through Erk1-Alox5 independent of caspase-9 signaling. Cells, 11(19), 3053. https://doi.org/10.3390/cells11193053
  • Cho, J. Y., Baik, K. U., Jung, J. H., & Park, M. H. (2000). In vitro anti-inflammatory effects of cynaropicrin, a sesquiterpene lactone, from Saussurea lappa. European Journal of Pharmacology, 398(3), 399–407. https://doi.org/10.1016/s0014-2999(00)00337-x
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364. https://doi.org/10.1093/nar/gkz382
  • Feghali, C. A., & Wright, T. M. (1997). Cytokines in Acute and Chronic Inflammation. Frontiers in Bioscience, 2(4), 12–26.
  • Gebhardt, F., BÜrger, H., & Brandt, B. (2000). Modulation of EGFR gene transcription by a polymorphic repetitive sequence – a link between genetics and epigenetics. The International Journal of Biological Markers, 15(1), 105–110. https://doi.org/10.1177/172460080001500120
  • Ghanbarian, A. T., & Hurst, L. D. (2015). Neighboring genes show correlated evolution in gene expression. Molecular Biology and Evolution, 32(7), 1748–1766. https://doi.org/10.1093/molbev/msv053
  • Ghoula, M., Janel, N., Camproux, A.-C., & Moroy, G. (2022). Exploring the structural rearrangements of the human insulin-degrading enzyme through molecular dynamics simulations. International Journal of Molecular Sciences, 23(3), 1746. https://doi.org/10.3390/ijms23031746
  • Goldie, M., & Dolan, S. (2013). Bilobalide, a unique constituent of Ginkgo biloba, inhibits inflammatory pain in rats. Behavioural Pharmacology, 24(4), 298–306. https://doi.org/10.1097/FBP.0b013e32836360ab
  • Gromiha, M. M., & Selvaraj, S. (1999). Importance of long-range interactions in protein folding1This article is dedicated to our teacher, Professor P.K. Ponnuswamy on the occasion of his 60th birthday. Biophysical Chemistry, 77(1), 49–68. https://doi.org/10.1016/S0301-4622(99)00010-1
  • Habermann, N., Ulrich, C. M., Lundgreen, A., Makar, K. W., Poole, E. M., Caan, B., Kulmacz, R., Whitton, J., Galbraith, R., Potter, J. D., & Slattery, M. L. (2013). PTGS1, PTGS2, ALOX5, ALOX12, ALOX15, and FLAP SNPs: Interaction with fatty acids in colon cancer and rectal cancer. Genes & Nutrition, 8(1), 115–126. https://doi.org/10.1007/s12263-012-0302-x
  • Ibrahim, R. S., & El-Banna, A. A. (2021). Network pharmacology-based analysis for unraveling potential cancer-related molecular targets of Egyptian propolis phytoconstituents accompanied with molecular docking and in vitro studies. RSC Advances, 11(19), 11610–11626. https://doi.org/10.1039/d1ra01390d
  • Ingley, E. (2008). Src family kinases: Regulation of their activities, levels and identification of new pathways. Biochimica et Biophysica Acta, 1784(1), 56–65. https://doi.org/10.1016/j.bbapap.2007.08.012
  • Irwin, M. E., Bohin, N., & Boerner, J. L. (2011). Src family kinases mediate epidermal growth factor receptor signaling from lipid rafts in breast cancer cells. Cancer Biology & Therapy, 12(8), 718–726. https://doi.org/10.4161/cbt.12.8.16907
  • Kimura, R., Nishioka, T., Soemantri, A., & Ishida, T. (2004). Cis-acting effect of the IL1B C − 31T polymorphism on IL-1β mRNA expression. Genes and Immunity, 5(7), 572–575. https://doi.org/10.1038/sj.gene.6364128
  • Kyrchanova, O., & Georgiev, P. (2021). Mechanisms of enhancer-promoter interactions in higher eukaryotes. International Journal of Molecular Sciences, 22(2), 671. https://doi.org/10.3390/ijms22020671
  • Li, S., Peng, Y., & Panchenko, A. R. (2022). DNA methylation: Precise modulation of chromatin structure and dynamics. Current Opinion in Structural Biology, 75, 102430. https://doi.org/10.1016/j.sbi.2022.102430
  • Li, X., Yuan, W., Wu, J., Zhen, J., Sun, Q., & Yu, M. (2022). Andrographolide, a natural anti-inflammatory agent: An update. Frontiers in Pharmacology, 13, 920435. https://doi.org/10.3389/fphar.2022.920435
  • Macalino, S. J. Y., Basith, S., Clavio, N. A. B., Chang, H., Kang, S., & Choi, S. (2018). Evolution of in silico strategies for protein-protein interaction drug discovery. Molecules, 23(8), 1963. https://doi.org/10.3390/molecules23081963
  • Martin, J., & Frezza, E. (2022). A dynamical view of protein-protein complexes: Studies by molecular dynamics simulations. Frontiers in Molecular Biosciences, 9, 970109. https://doi.org/10.3389/fmolb.2022.970109
  • Martín-Vázquez, E., Cobo-Vuilleumier, N., López-Noriega, L., Lorenzo, P. I., & Gauthier, B. R. (2023). The PTGS2/COX2-PGE2 signaling cascade in inflammation: Pro or anti? A case study with type 1 diabetes mellitus [Review. International Journal of Biological Sciences, 19(13), 4157–4165. https://doi.org/10.7150/ijbs.86492
  • Mathema, V. B., Koh, Y.-S., Thakuri, B. C., & Sillanpää, M. (2012). Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and anti-inflammatory activities. Inflammation, 35(2), 560–565. https://doi.org/10.1007/s10753-011-9346-0
  • McAdam, B. F., Mardini, I. A., Habib, A., Burke, A., Lawson, J. A., Kapoor, S., & FitzGerald, G. A. (2000). Effect of regulated expression of human cyclooxygenase isoforms on eicosanoid and isoeicosanoid production in inflammation. The Journal of Clinical Investigation, 105(10), 1473–1482. eng. https://doi.org/10.1172/JCI9523
  • Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature, 454(7203), 428–435. https://doi.org/10.1038/nature07201
  • Molla, M. D., Akalu, Y., Geto, Z., Dagnew, B., Ayelign, B., & Shibabaw, T. (2020). Role of Caspase-1 in the pathogenesis of inflammatory-associated chronic noncommunicable diseases. Journal of Inflammation Research, 13(null), 749–764. https://doi.org/10.2147/JIR.S277457
  • Moosavi, S., Rahgozar, M., & Rahimi, A. (2013). Protein function prediction using neighbor relativity in protein–protein interaction network. Computational Biology and Chemistry, 43, 11–16. https://doi.org/10.1016/j.compbiolchem.2012.12.003
  • Niu, T. T., Yuan, B. Y., & Liu, G. Z. (2022). Ginkgolides and bilobalide for treatment of Alzheimer’s disease and COVID-19: Potential mechanisms of action. European Review for Medical and Pharmacological Sciences, 26(24), 9502–9510. eng.
  • Noor, F., Tahir Ul Qamar, M., Ashfaq, U. A., Albutti, A., Alwashmi, A. S. S., & Aljasir, M. A. (2022). Network pharmacology approach for medicinal plants: Review and assessment. Pharmaceuticals, 15(5), 572. https://doi.org/10.3390/ph15050572
  • Paço, A., Brás, T., Santos, J. O., Sampaio, P., Gomes, A. C., & Duarte, M. F. (2022). Anti-inflammatory and immunoregulatory action of sesquiterpene lactones. Molecules, 27(3), 1142. https://doi.org/10.3390/molecules27031142
  • Panga, V., & Raghunathan, S. (2018). A cytokine protein-protein interaction network for identifying key molecules in rheumatoid arthritis. PloS One, 13(6), e0199530. https://doi.org/10.1371/journal.pone.0199530
  • Paraboschi, E. M., Cardamone, G., Rimoldi, V., Gemmati, D., Spreafico, M., Duga, S., Soldà, G., & Asselta, R. (2015). Meta-analysis of multiple sclerosis microarray data reveals dysregulation in RNA splicing regulatory genes. International Journal of Molecular Sciences, 16[(10), 23463–23481. p https://doi.org/10.3390/ijms161023463
  • Peng, X., Wang, J., Peng, W., Wu, F.-X., & Pan, Y. (2017). Protein–protein interactions: Detection, reliability assessment and applications. Briefings in Bioinformatics, 18(5), 798–819.
  • Pula, G., Crosby, D., Baker, J., & Poole, A. W. (2005). Functional interaction of protein kinase Cα with the tyrosine kinases Syk and Src in human platelets*. Journal of Biological Chemistry, 280(8), 7194–7205. https://doi.org/10.1074/jbc.M409212200
  • Qiao, Y., Wang, P., Qi, J., Zhang, L., & Gao, C. (2012). TLR-induced NF-κB activation regulates NLRP3 expression in murine macrophages. FEBS Letters, 586(7), 1022–1026. https://doi.org/10.1016/j.febslet.2012.02.045
  • Ricciotti, E., & FitzGerald, G. A. (2011). Prostaglandins and inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(5), 986–1000. https://doi.org/10.1161/ATVBAHA.110.207449
  • Sakle, N. S., More, S. A., & Mokale, S. N. (2020). A network pharmacology-based approach to explore potential targets of Caesalpinia pulcherima: An updated prototype in drug discovery. Scientific Reports, 10(1), 17217. https://doi.org/10.1038/s41598-020-74251-1
  • Sengupta, D., & Kundu, S. (2012). Role of long- and short-range hydrophobic, hydrophilic and charged residues contact network in protein’s structural organization. BMC Bioinformatics, 13(1), 142. https://doi.org/10.1186/1471-2105-13-142
  • Shannon, P.,Markiel, A.,Ozier, O.,Baliga, N. S.,Wang, J. T.,Ramage, D.,Amin, N.,Schwikowski, B., &Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303 14597658
  • Shi, C., Li, H., Yang, Y., & Hou, L. (2015). Anti-inflammatory and immunoregulatory functions of artemisinin and its derivatives. Mediators of Inflammation, 2015, 435713–435717. https://doi.org/10.1155/2015/435713
  • Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J., & von Mering, C. (2021). The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 49(D1), D605–D612. https://doi.org/10.1093/nar/gkaa1074
  • Tabasi, M., Maghami, P., Amiri-Tehranizadeh, Z., Reza Saberi, M., & Chamani, J. (2023). New perspective of the ternary complex of nano-curcumin with β-lactoglobulin in the presence of α-lactalbumin: Spectroscopic and molecular dynamic investigations. Journal of Molecular Liquids, 392, 123472. https://doi.org/10.1016/j.molliq.2023.123472
  • Taheri, R., Hamzkanlu, N., Rezvani, Y., Niroumand, S., Samandar, F., Amiri-Tehranizadeh, Z., Saberi, M. R., & Chamani, J. (2022). Exploring the HSA/DNA/lung cancer cells binding behavior of p-Synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: Multi spectroscopic, molecular dynamic and cellular approaches. Journal of Molecular Liquids, 368, 120826. https://doi.org/10.1016/j.molliq.2022.120826
  • Thorn, C. F., Grosser, T., Klein, T. E., & Altman, R. B. (2011). PharmGKB summary: Very important pharmacogene information for PTGS2. Pharmacogenetics and Genomics, 21(9), 607–613. https://doi.org/10.1097/FPC.0b013e3283415515
  • Tuller, T., Atar, S., Ruppin, E., Gurevich, M., & Achiron, A. (2013). Common and specific signatures of gene expression and protein–protein interactions in autoimmune diseases. Genes and Immunity, 14(2), 67–82. https://doi.org/10.1038/gene.2012.55
  • Vakser Ilya, A. (2014). Protein-protein docking: From interaction to interactome. Biophysical Journal, 107(8), 1785–1793. https://doi.org/10.1016/j.bpj.2014.08.033
  • Wee, P., & Wang, Z. (2017). Epidermal growth factor receptor cell proliferation signaling pathways. Cancers, 9(5), 52. https://doi.org/10.3390/cancers9050052
  • Williams, C. S., Mann, M., & DuBois, R. N. (1999). The role of cyclooxygenases in inflammation, cancer, and development. Oncogene, 18(55), 7908–7916. https://doi.org/10.1038/sj.onc.1203286
  • Yang, W., Ng, P., Zhao, M., Wong, T. K. F., Yiu, S.-M., & Lau, Y. L. (2008). Promoter-sharing by different genes in human genome – CPNE1 and RBM12 gene pair as an example. BMC Genomics, 9(1), 456. https://doi.org/10.1186/1471-2164-9-456
  • Zhang, L., Fang, X., Sun, J., Su, E., Cao, F., & Zhao, L. (2023). Study on synergistic anti-inflammatory effect of typical functional components of extracts of Ginkgo biloba leaves. Molecules, 28(3), 1377. https://doi.org/10.3390/molecules28031377

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.