147
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Computational investigation on the conformational dynamics of C-terminal truncated α-synuclein bound to membrane

ORCID Icon & ORCID Icon
Received 17 Oct 2023, Accepted 22 Jan 2024, Published online: 07 Feb 2024

References

  • Amadei, A., Linssen, A. B., & Berendsen, H. J. (1993). Essential dynamics of proteins. Proteins, 17(4), 412–425. https://doi.org/10.1002/prot.340170408
  • Anderson, J. P., Walker, D. E., Goldstein, J. M., de Laat, R., Banducci, K., Caccavello, R. J., Barbour, R., Huang, J., Kling, K., Lee, M., Diep, L., Keim, P. S., Shen, X., Chataway, T., Schlossmacher, M. G., Seubert, P., Schenk, D., Sinha, S., Gai, W. P., & Chilcote, T. J. (2006). Phosphorylation of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic Lewy Body Disease. Journal of Biological Chemistry, 281(40), 29739–29752. https://doi.org/10.1074/jbc.M600933200
  • Araki, K., Yagi, N., Aoyama, K., Choong, C., Hayakawa, H., Fujimura, H., Nagai, Y., Goto, Y., & Mochizuki, H. (2019). Parkinson’s disease is a type of amyloidosis featuring accumulation of amyloid fibrils of α-synuclein. Proceedings of the National Academy of Sciences of the United States of America, 116(36), 17963–17969. https://doi.org/10.1073/pnas.1906124116
  • Bassil, F., Fernagut, P.-O., Bezard, E., Pruvost, A., Leste-Lasserre, T., Hoang, Q. Q., Ringe, D., Petsko, G. A., & Meissner, W. G. (2016). Reducing C-terminal truncation mitigates synucleinopathy and neurodegeneration in a transgenic model of Multiple System Atrophy. Proceedings of the National Academy of Sciences of the United States of America, 113(34), 9593–9598. https://doi.org/10.1073/pnas.1609291113
  • Berendsen, H. J., Postma, J. P., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. D., & Zardecki, C. (2002). The Protein Data Bank. Acta Crystallographica. Section D, Biological Crystallography, 58(Pt 6 No 1), 899–907. https://doi.org/10.1107/s0907444902003451
  • Bertoncini, C. W., Jung, Y.-S., Fernandez, C. O., Hoyer, W., Griesinger, C., Jovin, T. M., & Zweckstetter, M. (2005). Release of long-range tertiary interactions potentiates aggregation of natively unstructured α-Synuclein. Proceedings of the National Academy of Sciences of the United States of America, 102(5), 1430–1435. https://doi.org/10.1073/pnas.0407146102
  • Bhattacharjee, P., Öhrfelt, A., Lashley, T., Blennow, K., Brinkmalm, A., & Zetterberg, H. (2019). Mass spectrometric analysis of Lewy Body-enriched α-synuclein in parkinson’s disease. Journal of Proteome Research, 18(5), 2109–2120. https://doi.org/10.1021/acs.jproteome.8b00982
  • Biere, A. L., Wood, S. J., Wypych, J., Steavenson, S., Jiang, Y., Anafi, D., Jacobsen, F. W., Jarosinski, M. A., Wu, G. M., Louis, J. C., Martin, F., Narhi, L. O., & Citron, M. (2000). Parkinson’s disease-associated α-synuclein is more fibrillogenic than β- and γ-synuclein and cannot cross-seed its homologs. The Journal of Biological Chemistry, 275(44), 34574–34579. https://doi.org/10.1074/jbc.m005514200
  • Bodles, A. M., Guthrie, D. J., Greer, B., & Irvine, G. B. (2001). Identification of the region of non-Aβ Component (NAC) of alzheimer’s disease amyloid responsible for its aggregation and toxicity. Journal of Neurochemistry, 78(2), 384–395. https://doi.org/10.1046/j.1471-4159.2001.00408.x
  • Bodner, C. R., Dobson, C. M., & Bax, A. (2009). Multiple tight phospholipid-binding modes of α-synuclein revealed by solution NMR spectroscopy. Journal of Molecular Biology, 390(4), 775–790. https://doi.org/10.1016/j.jmb.2009.05.066
  • Breydo, L., Wu, J. W., & Uversky, V. N. (2012). Α-synuclein misfolding and parkinson’s disease. Biochimica et Biophysica Acta, 1822(2), 261–285. https://doi.org/10.1016/j.bbadis.2011.10.002
  • Case, D. A., Ben-Shalom, I. Y., Brozell, S. R., Cerutti, D. S., Cheatham, T. E., III, Cruzeiro, V. W. D., Darden, T. A., Duke, R. E., Ghoreishi, D., Gilson, M. K., Gohlke, H., Goetz, A. W., Greene, D., Harris, R., Homeyer, N., Huang, Y., Izadi, S., Kovalenko, A., Kurtzman, T., Lee, T. S., LeGrand, S., Li, P., Lin, C., Liu, J., Luchko, T., Luo, R., Mermelstein, D. J., Merz, K. M., Miao, Y., Monard, G., Nguyen, C., Nguyen, H., Omelyan, I., Onufriev, A., Pan, F., Qi, R., Roe, D. R., Roitberg, A., Sagui, C., Schott-Verdugo, S., Shen, J., Simmerling, C. L., Smith, J., SalomonFerrer, R., Swails, J., Walker, R. C., Wang, J., Wei, H., Wolf, R. M., Wu, X., Xiao, L., York, D. M., … Kollman, P. A. (2018). AMBER 2018., University of California.
  • Coskuner, O., & Wise-Scira, O. (2013). Arginine and disordered amyloid-β peptide structures: Molecular level insights into the toxicity in alzheimer’s disease. ACS Chemical Neuroscience, 4(12), 1549–1558. https://doi.org/10.1021/cn4001389
  • Costantini, S., Colonna, G., & Facchiano, A. M. (2008). Esbri: A web server for evaluating salt bridges in proteins. Bioinformation, 3(3), 137–138. https://doi.org/10.6026/97320630003137
  • Daley, L. A. V., Luk, K. C., Patel, T. P., Tanik, S. A., Riddle, D. M., Stieber, A., Meaney, D. F., Trojanowski, J. Q., & Lee, V. M.-Y. (2011). Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron, 72(1), 57–71. https://doi.org/10.1016/j.neuron.2011.08.033
  • Darden, T., York, D., & Pedersen, L. (1993). Particle Mesh Ewald: Ann⋅log(n) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Das, D., Bharadwaz, P., & Mattaparthi, V. S. K. (2023). Computational investigation on the effect of the peptidomimetic inhibitors (NPT100-18A and NPT200-11) on the α-synuclein and lipid membrane interactions. Journal of Biomolecular Structure & Dynamics. https://doi.org/10.1080/07391102.2023.2262599
  • Das, D., & Mattaparthi, V. S. K. (2023). Conformational dynamics of A30g α-synuclein that causes familial parkinson disease. Journal of Biomolecular Structure & Dynamics, 41(24), 14702–14714. https://doi.org/10.1080/07391102.2023.2193997
  • Delcourt, V., Franck, J., Quanico, J., Gimeno, J.-P., Wisztorski, M., Raffo-Romero, A., Kobeissy, F., Roucou, X., Salzet, M., & Fournier, I. (2018). Spatially-resolved top-down proteomics bridged to MALDI MS Imaging reveals the molecular physiome of brain regions. Molecular & Cellular Proteomics: MCP, 17(2), 357–372. https://doi.org/10.1074/mcp.m116.065755
  • Eisenberg, D., & Jucker, M. (2012). The amyloid state of proteins in human diseases. Cell, 148(6), 1188–1203. https://doi.org/10.1016/j.cell.2012.02.022
  • El-Agnaf, O. M. A., Jakes, R., Curran, M. D., Middleton, D., Ingenito, R., Bianchi, E., Pessi, A., Neill, D., & Wallace, A. (1998). Aggregates from mutant and wild-type α-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of β-sheet and amyloid-like filaments. FEBS Letters, 440(1-2), 71–75. https://doi.org/10.1016/s0014-5793(98)01418-5
  • Eliezer, D. (2013). The mysterious C-terminal tail of alpha-synuclein: Nanobody’s guess. Journal of Molecular Biology, 425(14), 2393–2396. https://doi.org/10.1016/j.jmb.2013.03.031
  • Farzadfard, A., Pedersen, J. N., Meisl, G., Somavarapu, A. K., Alam, P., Goksøyr, L., Nielsen, M. A., Sander, A. F., Knowles, T. P. J., Pedersen, J. S., & Otzen, D. E. (2022). The C-terminal tail of α-synuclein protects against aggregate replication but is critical for oligomerization. Communications Biology, 5(1), 123. https://doi.org/10.1038/s42003-022-03059-8
  • Fernández, C. O., Hoyer, W., Zweckstetter, M., Jares-Erijman, E. A., Subramaniam, V., Griesinger, C., & Jovin, T. M. (2004). NMR of α-synuclein–polyamine complexes elucidates the mechanism and kinetics of induced aggregation. European Molecular Biology Organization Journal , 23(10), 2039–2046. https://doi.org/10.1038/sj.emboj.7600211
  • Fusco, G., Pape, T., Stephens, A. D., Mahou, P., Costa, A. R., Kaminski, C. F., Gabriele, S., Schierle, K., Vendruscolo, M., Veglia, G., Dobson, C. M., & De Simone, A. (2016). Structural basis of synaptic vesicle assembly promoted by α-Synuclein. Nature Communications, 7(1), 12563. http://doi.org/10.1038/ncomms12563
  • Games, D., Valera, E., Spencer, B., Rockenstein, E., Mante, M., Adame, A., Patrick, C., Ubhi, K., Nuber, S., Sacayon, P., Zago, W., Seubert, P., Barbour, R., Schenk, R., & Masliah, E. (2014). Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(28), 9441–9454. https://doi.org/10.1523/jneurosci.5314-13.2014
  • Geourjon, C., & Deléage, G. (1995). SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences: , 11(6), 681–684. https://doi.org/10.1093/bioinformatics/11.6.681
  • Giasson, B. I., Murray, I. V. J., Trojanowski, J. Q., & Lee, V. M. Y. (2001). A hydrophobic stretch of 12 amino acid residues in the middle of α-synuclein is essential for Filament Assembly. The Journal of Biological Chemistry, 276(4), 2380–2386. https://doi.org/10.1074/jbc.m008919200
  • Han, H., Weinreb, P. H., & Lansbury, P. T. (1995). The core alzheimer’s peptide NAC forms amyloid fibrils which seed and are seeded by β-amyloid: Is NAC a common trigger or target in neurodegenerative disease? Chemistry & Biology, 2(3), 163–169. https://doi.org/10.1016/1074-5521(95)90071-3
  • Henriques, J., Cragnell, C., & Skepö, M. (2015). Molecular dynamics simulations of intrinsically disordered proteins: Force field evaluation and comparison with experiment. Journal of Chemical Theory and Computation, 11(7), 3420–3431. https://doi.org/10.1021/ct501178z
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber Force fields and development of improved protein backbone parameters. Proteins, 65(3), 712–725. https://doi.org/10.1002/prot.21123
  • Hoyer, W., Cherny, D., Subramaniam, V., & Jovin, T. M. (2004). Impact of the acidic C-terminal region comprising amino acids 109-140 on R-synuclein aggregation in vitro. Biochemistry, 43(51), 16233–16242. https://doi.org/10.1021/bi048453u
  • Iyer, A., Roeters, S. J., Kogan, V., Woutersen, S., Claessens, M. M., & Subramaniam, V. (2017). C-terminal truncated α-synuclein fibrils contain strongly twisted β-sheets. Journal of the American Chemical Society, 139(43), 15392–15400. https://doi.org/10.1021/jacs.7b07403
  • Jao, C. C., Hegde, B. G., Chen, J., Haworth, I. S., & Langen, R. (2008). Structure of membrane-bound α-synuclein from site-directed spin labeling and computational refinement. Proceedings of the National Academy of Sciences of the United States of America, 105(50), 19666–19671. https://doi.org/10.1073/pnas.0807826105
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22(12), 2577–2637. https://doi.org/10.1002/bip.360221211
  • Kanda, S., Bishop, J. F., Eglitis, M. A., Yang, Y., & Mouradian, M. M. (2000). Enhanced vulnerability to oxidative stress by α-synuclein mutations and C-terminal truncation. Neuroscience, 97(2), 279–284. https://doi.org/10.1016/s0306-4522(00)00077-4
  • Kumar, P., & Bansal, M. (2012). Helanal-Plus: A web server for analysis of helix geometry in protein structures. Journal of Biomolecular Structure & Dynamics, 30(6), 773–783. https://doi.org/10.1080/07391102.2012.689705
  • Lee, H.-J., Choi, C., & Lee, S.-J. (2002). Membrane-bound α-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. The Journal of Biological Chemistry, 277(1), 671–678. https://doi.org/10.1074/jbc.m107045200
  • Levitan, K., Chereau, D., Cohen, S. I. A., Knowles, T. P. J., Dobson, C. M., Fink, A. L., Anderson, J. P., Goldstein, J. M., & Millhauser, G. L. (2011). Conserved C-terminal charge exerts a profound influence on the aggregation rate of α-synuclein. Journal of Molecular Biology, 411(2), 329–333. https://doi.org/10.1016/j.jmb.2011.05.046
  • Li, L., Nadanaciva, S., Berger, Z., Shen, W., Paumier, K., Schwartz, J., Mou, K., Loos, P., Milici, A. J., Dunlop, J., & Hirst, W. D. (2013). Human A53T α-synuclein causes reversible deficits in mitochondrial function and dynamics in primary mouse cortical neurons. PloS One, 8(12), e85815. https://doi.org/10.1371/journal.pone.0085815
  • Li, W., West, N., Colla, E., Pletnikova, O., Troncoso, J. C., Marsh, L., Dawson, T. M., Jäkälä, P., Hartmann, T., Price, D. L., & Lee, M. K. (2005). Aggregation promoting C-terminal truncation of α-synuclein is a normal cellular process and is enhanced by the familial parkinson’s disease-linked mutations. Proceedings of the National Academy of Sciences of the United States of America, 102(6), 2162–2167. https://doi.org/10.1073/pnas.0406976102
  • Losasso, V., Pietropaolo, A., Zannoni, C., Gustincich, S., & Carloni, P. (2011). Structural role of compensatory amino acid replacements in the α-synuclein protein. Biochemistry, 50(32), 6994–7001. https://doi.org/10.1021/bi2007564
  • Ma, L., Yang, C., Zhang, X., Li, Y., Wang, S., Zheng, L., & Huang, K. (2018). C-terminal truncation exacerbates the aggregation and cytotoxicity of α-synuclein: A vicious cycle in parkinson’s disease. Biochimica et Biophysica Acta. Molecular Basis of Disease, 1864(12), 3714–3725. https://doi.org/10.1016/j.bbadis.2018.10.003
  • McGlinchey, R. P., Lacy, S. M., Huffer, K. E., Tayebi, N., Sidransky, E., & Lee, J. C. (2019). C-terminal α-synuclein truncations are linked to cysteine cathepsin activity in Parkinson’s disease. The Journal of Biological Chemistry, 294(25), 9973–9984. https://doi.org/10.1074/jbc.ra119.008930
  • Mihajlovic, M., & Lazaridis, T. (2008). Membrane‐bound structure and energetics of α‐synuclein. Proteins, 70(3), 761–778. https://doi.org/10.1002/prot.21558
  • Muntané, G., Ferrer, I., & Martinez-Vicente, M. (2012). Α-synuclein phosphorylation and truncation are normal events in the adult human brain. Neuroscience, 200, 106–119. https://doi.org/10.1016/j.neuroscience.2011.10.042
  • Murray, I. V., Giasson, B. I., Quinn, S. M., Koppaka, V., Axelsen, P. H., Ischiropoulos, H., Trojanowski, J. Q., & Lee, V. M. Y. (2003). Role of α-synuclein carboxy-terminus on fibril formation in vitro. Biochemistry, 42(28), 8530–8540. https://doi.org/10.1021/bi027363r
  • Ni, X., McGlinchey, R. P., Jiang, J., & Lee, J. C. (2019). Structural insights into α-synuclein fibril polymorphism: Effects of parkinson’s disease-related C-terminal truncations. Journal of Molecular Biology, 431(19), 3913–3919. https://doi.org/10.1016/j.jmb.2019.07.001
  • Pawar, A. P., Dubay, K. F., Zurdo, J., Chiti, F., Vendruscolo, M., & Dobson, C. M. (2005). Prediction of “aggregation-prone” and “aggregation-susceptible” regions in proteins associated with neurodegenerative diseases. Journal of Molecular Biology, 350(2), 379–392. https://doi.org/10.1016/j.jmb.2005.04.016
  • Peelaerts, W., Bousset, L., Van der Perren, A., Moskalyuk, A., Pulizzi, R., Giugliano, M., Van den Haute, C., Melki, R., & Baekelandt, V. (2015). Α-synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature, 522(7556), 340–344. https://doi.org/10.1038/nature14547
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Ramis, R., Ortega-Castro, J., Vilanova, B., Adrover, M., & Frau, J. (2021). Cu2+, ca2+, and methionine oxidation expose the hydrophobic α-synuclein NAC domain. International Journal of Biological Macromolecules, 169, 251–263. https://doi.org/10.1016/j.ijbiomac.2020.12.018
  • Reed, A. L., Mitchell, W., Alexandrescu, A. T., & Alder, N. N. (2023). Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Frontiers in Physiology, 14, 1263420. https://doi.org/10.3389/fphys.2023.1263420
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of N-Alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S., & Walker, R. C. (2013). Routine microsecond molecular dynamics simulations with Amber on gpus. 2. Explicit solvent particle mesh ewald. Journal of Chemical Theory and Computation, 9(9), 3878–3888. https://doi.org/10.1021/ct400314y
  • Salsbury, F. R. Jr (2010). Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Current Opinion in Pharmacology, 10(6), 738–744., https://doi.org/10.1016/j.coph.2010.09.016
  • Sanjeev, A., & Mattaparthi, V. S. (2017). Effect of C-terminal truncations on the aggregation propensity of Α- synuclein - a potential of mean force study. Journal of Molecular Imaging & Dynamics, 07(01), 1000132. https://doi.org/10.4172/2155-9937.1000132
  • Sanjeev, A., & Mattaparthi, V. S. (2018). Dimerization of C-terminal truncations of α-synuclein and its effect on the aggregation propensity: A potential of mean force study. Current Chemical Biology, 12(2), 191–200. https://doi.org/10.2174/2212796812666180430143502
  • Sanjeev, A., Sahu, R. K., & Mattaparthi, V. S. (2016). Potential of mean force and molecular dynamics study on the transient interactions between α and β synuclein that drive inhibition of α-synuclein aggregation. Journal of Biomolecular Structure & Dynamics, 35(15), 3342–3353. https://doi.org/10.1080/07391102.2016.1254119
  • Singh, S. K., Dutta, A., & Modi, G. (2017). Α-synuclein aggregation modulation: An emerging approach for the treatment of parkinson’s disease. Future Medicinal Chemistry, 9(10), 1039–1053. https://doi.org/10.4155/fmc-2017-0016
  • Sorrentino, Z. A., Vijayaraghavan, N., Gorion, K.-M., Riffe, C. J., Strang, K. H., Caldwell, J., & Giasson, B. I. (2018). Physiological C-terminal truncation of α-synuclein potentiates the prion-like formation of pathological inclusions. The Journal of Biological Chemistry, 293(49), 18914–18932. https://doi.org/10.1074/jbc.ra118.005603
  • Sorrentino, Z. A., Xia, Y., Gorion, K., Hass, E., & Giasson, B. I. (2020). Carboxy‐terminal truncations of mouse α‐synuclein alter aggregation and prion‐like seeding. FEBS Letters, 594(8), 1271–1283. https://doi.org/10.1002/1873-3468.13728
  • Stefanis, L. (2011). α-synuclein in parkinson’s disease. Cold Spring Harbor Perspectives in Medicine, 2(2), a009399. https://doi.org/10.1101/cshperspect.a009399
  • Stefanova, N., Klimaschewski, L., Poewe, W., Wenning, G. K., & Reindl, M. (2001). Glial cell death induced by overexpression of ?-synuclein. Journal of Neuroscience Research, 65(5), 432–438. https://doi.org/10.1002/jnr.1171
  • Stephens, A. D., Zacharopoulou, M., Moons, R., Fusco, G., Seetaloo, N., Chiki, A., Woodhams, P. J., Mela, I., Lashuel, H. A., Phillips, J. J., Simone, A. D., Sobott, F., & Schierle, G. S. (2020). Extent of N-terminus exposure of monomeric alpha-synuclein determines its aggregation propensity. Nature Communications, 11(1), 2820. https://doi.org/10.1038/s41467-020-16564-3
  • Terada, M., Suzuki, G., Nonaka, T., Kametani, F., Tamaoka, A., & Hasegawa, M. (2018). The effect of truncation on prion-like properties of α-synuclein. The Journal of Biological Chemistry, 293(36), 13910–13920. https://doi.org/10.1074/jbc.ra118.001862
  • Ulusoy, A., Febbraro, F., Jensen, P. H., Kirik, D., & Romero-Ramos, M. (2010). Co-expression of C-terminal truncated alpha-synuclein enhances full-length alpha-synuclein-induced pathology. The European Journal of Neuroscience, 32(3), 409–422. https://doi.org/10.1111/j.1460-9568.2010.07284.x
  • Van der Wateren, I. M., Knowles, T. P., Buell, A. K., Dobson, C. M., & Galvagnion, C. (2018). C-terminal truncation of α-synuclein promotes amyloid fibril amplification at physiological ph. Chemical Science, 9(25), 5506–5516. https://doi.org/10.1039/c8sc01109e
  • Waxman, E. A., Mazzulli, J. R., & Giasson, B. I. (2009). Characterization of hydrophobic residue requirements for α-synuclein fibrillization. Biochemistry, 48(40), 9427–9436. https://doi.org/10.1021/bi900539p
  • Wong, Y. C., & Krainc, D. (2017). Α-synuclein toxicity in neurodegeneration: Mechanism and therapeutic strategies. Nature Medicine, 23(2), 1–13. https://doi.org/10.1038/nm.4269
  • Xiao, J., & Salsbury, F. R. (2017). Molecular dynamics simulations of aptamer-binding reveal generalized allostery in thrombin. Journal of Biomolecular Structure & Dynamics, 35(15), 3354–3369. https://doi.org/10.1080/07391102.2016.1254682
  • Zarbiv, Y., Simhi-Haham, D., Israeli, E., Elhadi, S. A., Grigoletto, J., & Sharon, R. (2014). Lysine residues at the first and second KTKEGV repeats mediate α-synuclein binding to membrane phospholipids. Neurobiology of Disease, 70, 90–98. https://doi.org/10.1016/j.nbd.2014.05.031
  • Zhang, C., Pei, Y., Zhang, Z., Xu, L., Liu, X., Jiang, L., Pielak, G. J., Zhou, X., Liu, M., & Li, C. (2022). C-terminal truncation modulates α-synuclein’s cytotoxicity and aggregation by promoting the interactions with membrane and chaperone. Communications Biology, 5(1), 798. https://doi.org/10.1038/s42003-022-03768-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.