125
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design of human ACE2 mimic miniprotein binders that interact with RBD of SARS-CoV-2 variants of concerns

, & ORCID Icon
Received 12 Sep 2023, Accepted 20 Jan 2024, Published online: 05 Feb 2024

References

  • Alford, R. F., Leaver-Fay, A., Jeliazkov, J. R., O'Meara, M. J., DiMaio, F. P., Park, H., Shapovalov, M. V., Renfrew, P. D., Mulligan, V. K., Kappel, K., Labonte, J. W., Pacella, M. S., Bonneau, R., Bradley, P., Dunbrack, R. L., Das, R., Baker, D., Kuhlman, B., Kortemme, T., & Gray, J. J. (2017). The rosetta all-atom energy function for macromolecular modeling and design. Journal of Chemical Theory and Computation, 13(6), 3031–3048. https://doi.org/10.1021/acs.jctc.7b00125
  • Andrews, N., Stowe, J., Kirsebom, F., Toffa, S., Rickeard, T., Gallagher, E., Gower, C., Kall, M., Groves, N., O'Connell, A.-M., Simons, D., Blomquist, P. B., Zaidi, A., Nash, S., Iwani Binti Abdul Aziz, N., Thelwall, S., Dabrera, G., Myers, R., Amirthalingam, G., … Lopez Bernal, J. (2022). Covid-19 vaccine effectiveness against the omicron (B.1.1.529) variant. The New England Journal of Medicine, 386(16), 1532–1546. https://doi.org/10.1056/NEJMoa2119451
  • Barton, M. I., MacGowan, S. A., Kutuzov, M. A., Dushek, O., Barton, G. J., & van der Merwe, P. A. (2021). Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. eLife, 10, e70658. https://doi.org/10.7554/eLife.70658
  • Bartoschik, T., Galinec, S., Kleusch, C., Walkiewicz, K., Breitsprecher, D., Weigert, S., Muller, Y. A., You, C., Piehler, J., Vercruysse, T., Daelemans, D., & Tschammer, N. (2018). Near-native, site-specific and purification-free protein labeling for quantitative protein interaction analysis by MicroScale Thermophoresis. Scientific Reports, 8(1), 4977. https://doi.org/10.1038/s41598-018-23154-3
  • Bonneau, R., Tsai, J., Ruczinski, I., Chivian, D., Rohl, C., Strauss, C. E., & Baker, D. (2001). Rosetta in CASP4: Progress in ab initio protein structure prediction. Proteins, 5, 119–126. https://doi.org/10.1002/prot.1170
  • Cao, L., Goreshnik, I., Coventry, B., Case, J. B., Miller, L., Kozodoy, L., Chen, R. E., Carter, L., Walls, A. C., Park, Y. J., Strauch, E. M., Stewart, L., Diamond, M. S., Veesler, D., & Baker, D. (2020). De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science (New York, N.Y.), 370(6515), 426–431. https://doi.org/10.1126/science.abd9909
  • Case, J. B., Chen, R. E., Cao, L., Ying, B., Winkler, E. S., Johnson, M., Goreshnik, I., Pham, M. N., Shrihari, S., Kafai, N. M., Bailey, A. L., Xie, X., Shi, P. Y., Ravichandran, R., Carter, L., Stewart, L., Baker, D., & Diamond, M. S. (2021). Ultrapotent miniproteins targeting the SARS-CoV-2 receptor-binding domain protect against infection and disease. Cell Host & Microbe, 29(7), 1151–1161.e5. https://doi.org/10.1016/j.chom.2021.06.008
  • Fleishman, S. J., Leaver-Fay, A., Corn, J. E., Strauch, E.-M., Khare, S. D., Koga, N., Ashworth, J., Murphy, P., Richter, F., Lemmon, G., Meiler, J., & Baker, D. (2011). RosettaScripts: A scripting language interface to the Rosetta macromolecular modeling suite. PLoS One, 6(6), e20161. https://doi.org/10.1371/journal.pone.0020161
  • Gainza, P., Wehrle, S., Van Hall-Beauvais, A., Marchand, A., Scheck, A., Harteveld, Z., Buckley, S., Ni, D., Tan, S., Sverrisson, F., Goverde, C., Turelli, P., Raclot, C., Teslenko, A., Pacesa, M., Rosset, S., Georgeon, S., Marsden, J., Petruzzella, A., … Correia, B. E. (2023). De novo design of protein interactions with learned surface fingerprints. Nature, 617(7959), 176–184. https://doi.org/10.1038/s41586-023-05993-x
  • Gaur, N. K., Goyal, V. D., Kulkarni, K., & Makde, R. D. (2021). Machine learning classifiers aid virtual screening for efficient design of mini-protein therapeutics. Bioorganic & Medicinal Chemistry Letters, 38, 127852. https://doi.org/10.1016/j.bmcl.2021.127852
  • Glasgow, A., Glasgow, J., Limonta, D., Solomon, P., Lui, I., Zhang, Y., Nix, M. A., Rettko, N. J., Zha, S., Yamin, R., Kao, K., Rosenberg, O. S., Ravetch, J. V., Wiita, A. P., Leung, K. K., Lim, S. A., Zhou, X. X., Hobman, T. C., Kortemme, T., & Wells, J. A. (2020). Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 117(45), 28046–28055. https://doi.org/10.1073/pnas.2016093117
  • Gray, J. J., Moughon, S., Wang, C., Schueler-Furman, O., Kuhlman, B., Rohl, C. A., & Baker, D. (2003). Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. Journal of Molecular Biology, 331(1), 281–299. https://doi.org/10.1016/s0022-2836(03)00670-3
  • He, Y., Qi, J., Xiao, L., Shen, L., Yu, W., & Hu, T. (2021). Purification and characterization of the receptor-binding domain of SARS-CoV-2 spike protein from Escherichia coli. Engineering in Life Sciences, 21(6), 453–460. https://doi.org/10.1002/elsc.202000106
  • Hunt, A. C., Case, J. B., Park, Y. J., Cao, L., Wu, K., Walls, A. C., Liu, Z., Bowen, J. E., Yeh, H. W., Saini, S., Helms, L., Zhao, Y. T., Hsiang, T.-Y., Starr, T. N., Goreshnik, I., Kozodoy, L., Carter, L., Ravichandran, R., Green, L. B., … Baker, D. (2022). Multivalent designed proteins neutralize SARS-CoV-2 variants of concern and confer protection against infection in mice. Science Translational Medicine, 14(646), eabn1252. https://doi.org/10.1126/scitranslmed.abn1252
  • Jeong, B. S., Cha, J. S., Hwang, I., Kim, U., Adolf-Bryfogle, J., Coventry, B., Cho, H. S., Kim, K. D., & Oh, B. H. (2022). Computational design of a neutralizing antibody with picomolar binding affinity for all concerning SARS-CoV-2 variants. mAbs, 14(1), 2021601. https://doi.org/10.1080/19420862.2021.2021601
  • Karoyan, P., Vieillard, V., Gómez-Morales, L., Odile, E., Guihot, A., Luyt, C. E., Denis, A., Grondin, P., & Lequin, O. (2021). Human ACE2 peptide-mimics block SARS-CoV-2 pulmonary cells infection. Communications Biology, 4(1), 197. https://doi.org/10.1038/s42003-021-01736-8
  • Kohnke, B., Kutzner, C., & Grubmüller, H. (2020). A GPU-accelerated fast multipole method for GROMACS: Performance and accuracy. Journal of Chemical Theory and Computation, 16(11), 6938–6949. https://doi.org/10.1021/acs.jctc.0c00744
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa–a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lopez Bernal, J., Andrews, N., Gower, C., Gallagher, E., Simmons, R., Thelwall, S., Stowe, J., Tessier, E., Groves, N., Dabrera, G., Myers, R., Campbell, C. N. J., Amirthalingam, G., Edmunds, M., Zambon, M., Brown, K. E., Hopkins, S., Chand, M., & Ramsay, M. (2021). Effectiveness of covid-19 vaccines against the B.1.617.2 (delta) variant. The New England Journal of Medicine, 385(7), 585–594. https://doi.org/10.1056/NEJMoa2108891
  • Micsonai, A., Wien, F., Bulyáki, É., Kun, J., Moussong, É., Lee, Y.-H., Goto, Y., Réfrégiers, M., & Kardos, J. (2018). BeStSel: A web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Research, 46(W1), W315–W322. https://doi.org/10.1093/nar/gky497
  • Pinto, D., Sauer, M. M., Czudnochowski, N., Low, J. S., Tortorici, M. A., Housley, M. P., Noack, J., Walls, A. C., Bowen, J. E., Guarino, B., Rosen, L. E., di Iulio, J., Jerak, J., Kaiser, H., Islam, S., Jaconi, S., Sprugasci, N., Culap, K., Abdelnabi, R., … Veesler, D. (2021). Broad betacoronavirus neutralization by a stem helix-specific human antibody. Science (New York, NY), 373(6559), 1109–1116. https://doi.org/10.1126/science.abj3321
  • Sapay, N., & Tieleman, D. P. (2011). Combination of the CHARMM27 force field with united-atom lipid force fields. Journal of Computational Chemistry, 32(7), 1400–1410. https://doi.org/10.1002/jcc.21726
  • Sun, X., Yi, C., Zhu, Y., Ding, L., Xia, S., Chen, X., Liu, M., Gu, C., Lu, X., Fu, Y., Chen, S., Zhang, T., Zhang, Y., Yang, Z., Ma, L., Gu, W., Hu, G., Du, S., Yan, R., … Sun, B. (2022). Neutralization mechanism of a human antibody with pan-coronavirus reactivity including SARS-CoV-2. Nature Microbiology, 7(7), 1063–1074. https://doi.org/10.1038/s41564-022-01155-3
  • Tan, S., Kern, R. C., & Selleck, W. (2005). The pST44 polycistronic expression system for producing protein complexes in Escherichia coli. Protein Expression and Purification, 40(2), 385–395. https://doi.org/10.1016/j.pep.2004.12.002
  • Wang, Y., Liu, C., Zhang, C., Wang, Y., Hong, Q., Xu, S., Li, Z., Yang, Y., Huang, Z., & Cong, Y. (2022). Structural basis for SARS-CoV-2 Delta variant recognition of ACE2 receptor and broadly neutralizing antibodies. Nature Communications, 13(1), 871. https://doi.org/10.1038/s41467-022-28528-w
  • Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics, 54, 5.6.1–5.6.37. https://doi.org/10.1002/cpbi.3
  • World Health Organization. (2023). Tracking SARS-CoV-2 variants. www.who.int. Published 2021. Accessed August 15, https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
  • Xie, J., Ding, C., He, J., Zhang, Y., Ni, S., Zhang, X., Chen, Q., Wang, J., Huang, L., He, H., Li, W., Ma, H., Jin, T., Zhang, S., & Gao, Y. (2021). Novel monoclonal antibodies and recombined antibodies against variant SARS-CoV-2. Frontiers in Immunology, 12, 715464. https://doi.org/10.3389/fimmu.2021.715464
  • Zhao, F., Keating, C., Ozorowski, G., Shaabani, N., Francino-Urdaniz, I. M., Barman, S., Limbo, O., Burns, A., Zhou, P., Ricciardi, M. J., Woehl, J., Tran, Q., Turner, H. L., Peng, L., Huang, D., Nemazee, D., Andrabi, R., Sok, D., Teijaro, J. R., … Jardine, J. G. (2022). Engineering SARS-CoV-2 neutralizing antibodies for increased potency and reduced viral escape pathways. iScience, 25(9), 104914. https://doi.org/10.1016/j.isci.2022.104914

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.