99
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Deciphering the binding mechanism of gingerol molecules with plasma proteins: implications for drug delivery and therapeutic potential

, , &
Received 30 Jul 2023, Accepted 22 Jan 2024, Published online: 02 Feb 2024

References

  • Alharbi, K. S., Nadeem, M. S., Afzal, O., Alzarea, S. I., Altamimi, A. S. A., Almalki, W. H., Mubeen, B., Iftikhar, S., Shah, L., & Kazmi, I. (2022). Gingerol, a natural antioxidant, attenuates hyperglycemia and downstream complications. Metabolites, 12(12), 1274. https://doi.org/10.3390/metabo12121274
  • Ali, M. S., & Al-Lohedan, H. A. (2018). Spectroscopic and computational evaluation on the binding of safranal with human serum albumin: Role of inner filter effect in fluorescence spectral correction. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 203, 434–442. https://doi.org/10.1016/j.saa.2018.05.102
  • Aloliqi, A. A. (2022). Therapeutic potential of 6-gingerol in prevention of colon cancer induced by azoxymethane through the modulation of antioxidant potential and inflammation. Current Issues in Molecular Biology, 44(12), 6218–6228. https://doi.org/10.3390/cimb44120424
  • Ascoli, G. A., Domenici, E., & Bertucci, C. (2006). Drug binding to human serum albumin: Abridged review of results obtained with high-performance liquid chromatography and circular dichroism. Chirality, 18(9), 667–679. https://doi.org/10.1002/chir.20301
  • Beeram, S. R., Zhang, C., Suh, K., Clarke, W. A., & Hage, D. S. (2021). Characterization of drug binding with alpha(1)-acid glycoprotein in clinical samples using ultrafast affinity extraction. Journal of Chromatography A, 1649, 462240. https://doi.org/10.1016/j.chroma.2021.462240
  • Bhattacharya, A. A., Grüne, T., & Curry, S. (2000). Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. Journal of Molecular Biology, 303(5), 721–732. https://doi.org/10.1006/jmbi.2000.4158
  • Bowers, K. J., Sacerdoti, F. D., Salmon, J. K., Shan, Y., Shaw, D. E., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I. & Moraes, M. A. (2006). Molecular dynamics--- Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE conference on Supercomputing - SC ’06, 84–es. Tampa, Florida: Association for Computing Machinery.
  • Bteich, M. (2019). An overview of albumin and alpha-1-acid glycoprotein main characteristics: Highlighting the roles of amino acids in binding kinetics and molecular interactions. Heliyon, 5(11), e02879. https://doi.org/10.1016/j.heliyon.2019.e02879
  • Chuang, V. T., & Otagiri, M. (2007). Recombinant human serum albumin. Drugs of Today (Barcelona, Spain: 1998), 43(8), 547–561. https://doi.org/10.1358/dot.2007.43.8.1067343
  • Curry, S., Brick, P., & Frank, N. P. (1999). Atomic structure and chemistry of human serum albumin. Biochimica et Biophysica Acta, 1441(2–3), 131–140. https://doi.org/10.1016/s1388-1981(99)00148-1
  • Curry, S., Mandelkow, H., Brick, P., & Franks, N. (1998). Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nature Structural Biology, 5(9), 827–835. https://doi.org/10.1038/1869
  • da Silveira Vasconcelos, M., Mota, E. F., Gomes-Rochette, N. F., Nunes-Pinheiro, D. C. S., Nabavi, S. M., & de Melo, D. F. (2019). Chapter 3.18 - Ginger (Zingiber officinale Roscoe). In S. M. Nabavi and A. S. Silva (Eds.), Nonvitamin and nonmineral nutritional supplements (pp. 235–239).Academic Press.
  • Deng, B., Jiang, X. L., Xu, Y. C., Chen, S., Cai, M., Deng, S. H., Ding, W. J., Xu, H. L., Zhang, S. W., Tan, Z. B., Chen, R. X., Liu, B., & Zhang, J. Z. (2022). 10-Gingerol, a natural AMPK agonist, suppresses neointimal hyperplasia and inhibits vascular smooth muscle cell proliferation. Food & Function, 13(6), 3234–3246. https://doi.org/10.1039/d1fo03610f
  • Evoli, S., Mobley, D. L., Guzzi, R., & Rizzuti, B. (2016). Multiple binding modes of ibuprofen in human serum albumin identified by absolute binding free energy calculations. Physical Chemistry Chemical Physics, 18(47), 32358–32368. https://doi.org/10.1039/c6cp05680f
  • Fasano, M., Curry, S., Terreno, E., Galliano, M., Fanali, G., Narciso, P., Notari, S., & Ascenzi, P. (2005). The extraordinary ligand binding properties of human serum albumin. IUBMB Life, 57(12), 787–796. https://doi.org/10.1080/15216540500404093
  • Fehske, K. J., Müller, W. E., & Wollert, U. (1981). The location of drug binding sites in human serum albumin. Biochemical Pharmacology, 30(7), 687–692. https://doi.org/10.1016/0006-2952(81)90151-9
  • Ferreira, F. C. S., Clementino, M., Rodrigues, F. A. P., Veras, H. N., Martins, D. S., Queiroga, M. L., Lima, M. A., Silva, D. O., de Freitas, T. M., Ribeiro, S. A., Mota, M. R. L., da Silva, J. A., Lima, A. A. M., & Havt, A. (2023). [8] and [10]-Gingerol reduces urothelial damage in ifosfamide-induced hemorrhagic cystitis via JAK/STAT/FOXO signaling pathway via IL-10. Naunyn-Schmiedeberg’s Archives of Pharmacology, 396(8), 1773–1786. https://doi.org/10.1007/s00210-023-02436-2
  • Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure-based drug design strategies. Molecules (Basel, Switzerland), 20(7), 13384–13421. https://doi.org/10.3390/molecules200713384
  • Fournier, T., Vranckx, R., Mejdoubi, N., Durand, G., & Porquet, D. (1994). Induction of rat alpha-1-acid glycoprotein by phenobarbital is independent of a general acute-phase response. Biochemical Pharmacology, 48(7), 1531–1535. https://doi.org/10.1016/0006-2952(94)90581-9
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Fuse, E., Tanii, H., Takai, K., Asanome, K., Kurata, N., Kobayashi, H., Kuwabara, T., Kobayashi, S., & Sugiyama, Y. (1999). Altered pharmacokinetics of a novel anticancer drug, UCN-01, caused by specific high affinity binding to alpha1-acid glycoprotein in humans. Cancer Research, 59(5), 1054–1060.https://www.ncbi.nlm.nih.gov/pubmed/10070963
  • Ghosh, S., Das, B., Haldar, P. K., Kar, A., Chaudhary, S. K., Singh, K. O., Bhardwaj, P. K., Sharma, N., & Mukherjee, P. K. (2023). 6-Gingerol contents of several ginger varieties of Northeast India and correlation of their antioxidant activity in respect to phenolics and flavonoids contents. Phytochemical Analysis: PCA, 34(3), 259–268. https://doi.org/10.1002/pca.3201
  • Ghuman, J., Zunszain, P. A., Petitpas, I., Bhattacharya, A. A., Otagiri, M., & Curry, S. (2005). Structural basis of the drug-binding specificity of human serum albumin. Journal of Molecular Biology, 353(1), 38–52. https://doi.org/10.1016/j.jmb.2005.07.075
  • Godschalk, F., Genheden, S., Söderhjelm, P., & Ryde, U. (2013). Comparison of MM/GBSA calculations based on explicit and implicit solvent simulations. Physical Chemistry Chemical Physics, 15(20), 7731–7739. https://doi.org/10.1039/c3cp00116d
  • Gokara, M., Kimavath, G. B., Podile, A. R., & Subramanyam, R. (2015). Differential interactions and structural stability of chitosan oligomers with human serum albumin and alpha-1-glycoprotein. Journal of Biomolecular Structure & Dynamics, 33(1), 196–210. https://doi.org/10.1080/07391102.2013.868321
  • Gokara, M., Narayana, V. V., Sadarangani, V., Chowdhury, S. R., Varkala, S., Ramachary, D. B., & Subramanyam, R. (2017). Unravelling the binding mechanism and protein stability of human serum albumin while interacting with nefopam analogues: A biophysical and in silico approach. Journal of Biomolecular Structure & Dynamics, 35(10), 2280–2292. https://doi.org/10.1080/07391102.2016.1216895
  • Gokara, M., Sudhamalla, B., Amooru, D. G., & Subramanyam, R. (2010). Molecular interaction studies of trimethoxy flavone with human serum albumin. PLoS One, 5(1), e8834. https://doi.org/10.1371/journal.pone.0008834
  • Gorinstein, S., Goshev, I., Moncheva, S., Zemser, M., Weisz, M., Caspi, A., Libman, I., Lerner, H. T., Trakhtenberg, S., & Martín-Belloso, O. (2000). Intrinsic tryptophan fluorescence of human serum proteins and related conformational changes. Journal of Protein Chemistry, 19(8), 637–642. https://doi.org/10.1023/a:1007192017291
  • Govindarajan, V. S. (1982). Ginger–chemistry, technology, and quality evaluation: Part 1. Critical Reviews in Food Science and Nutrition, 17(1), 1–96. https://doi.org/10.1080/10408398209527343
  • Graciani, F. S., & Ximenes, V. F. (2013). Investigation of human albumin-induced circular dichroism in dansylglycine. PLoS One, 8(10), e76849. https://doi.org/10.1371/journal.pone.0076849
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • He, X. M., & Carter, D. C. (1992). Atomic structure and chemistry of human serum albumin. Nature, 358, 209–215.
  • Hildebrand, P. W., Rose, A. S., & Tiemann, J. K. S. (2019). Bringing molecular dynamics simulation data into view. Trends in Biochemical Sciences, 44(11), 902–913. https://doi.org/10.1016/j.tibs.2019.06.004
  • Hollingsworth, S. A., & Dror, R. O. (2018). Molecular dynamics simulation for all. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
  • Hu, S. M., Yao, X. H., Hao, Y. H., Pan, A. H., & Zhou, X. W. (2020). 8‑Gingerol regulates colorectal cancer cell proliferation and migration through the EGFR/STAT/ERK pathway. International Journal of Oncology, 56(1), 390–397. https://doi.org/10.3892/ijo.2019.4934
  • Huang, Z., & Ung, T. (2013). Effect of alpha-1-acid glycoprotein binding on pharmacokinetics and pharmacodynamics. Current Drug Metabolism, 14(2), 226–238.https://www.ncbi.nlm.nih.gov/pubmed/23092311
  • Israili, Z., & Dayton, P. (2001). Human alpha-1-glycoprotein and its interactions with drugs. Drug Metabolism Reviews, 33(2), 161–235. https://doi.org/10.1081/dmr-100104402
  • Jahanban-Esfahlan, A., Dastmalchi, S., & Davaran, S. (2016). A simple improved desolvation method for the rapid preparation of albumin nanoparticles. International Journal of Biological Macromolecules, 91, 703–709. https://doi.org/10.1016/j.ijbiomac.2016.05.032
  • Jahanban-Esfahlan, A., Davaran, S., & Dastmalchi, S. (2022). Preparation and antiproliferative activity evaluation of juglone-loaded BSA nanoparticles. Advanced Pharmaceutical Bulletin, 12(4), 818–827. https://doi.org/10.34172/apb.2022.087
  • Jahanban-Esfahlan, A., Ostadrahimi, A., Jahanban-Esfahlan, R., Roufegarinejad, L., Tabibiazar, M., & Amarowicz, R. (2019). Recent developments in the detection of bovine serum albumin. International Journal of Biological Macromolecules, 138, 602–617. https://doi.org/10.1016/j.ijbiomac.2019.07.096
  • Jahanban-Esfahlan, A., Roufegarinejad, L., Jahanban-Esfahlan, R., Tabibiazar, M., & Amarowicz, R. (2020). Latest developments in the detection and separation of bovine serum albumin using molecularly imprinted polymers. Talanta, 207, 120317. https://doi.org/10.1016/j.talanta.2019.120317
  • Jiang, S. L., Li, L., Hu, L., Kou, S. B., & Shi, J. H. (2023). Comprehending binding features between ibrutinib and Human Alpha-1 acid glycoprotein: Combined experimental approaches and theoretical simulations. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 285, 121834. https://doi.org/10.1016/j.saa.2022.121834
  • Kiptiyah, K., Widodo, W., Ciptadi, G., Aulanni’Am, A., Widodo, M. A., & Sumitro, S. B. (2020). 10-gingerol induces oxidative stress through HTR1A in cumulus cells: In-vitro and in-silico studies. Journal of Complementary & Integrative Medicine, 17(4), 397-406. https://doi.org/10.1515/jcim-2019-0042
  • Kou, S. B., Li, L., Zhang, R. J., Shi, J. H., & Jiang, S. L. (2023). Elucidation of the interaction mechanism of olmutinib with human α-1 acid glycoprotein: Insights from spectroscopic and molecular modeling studies. Journal of Biomolecular Structure & Dynamics, 41(2), 525–537. https://doi.org/10.1080/07391102.2021.2009373
  • Kremer, J. M., Wilting, J., & Janssen, L. (1988). Drug binding to human alpha-1-acid glycoprotein in health and disease. Pharmacological Reviews, 40(1), 1–47. https://www.ncbi.nlm.nih.gov/pubmed/3064105
  • Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy. Principles of fluorescence spectroscopy, by JR Lakowicz. ISBN 0-387-31278-1. Springer.
  • Lakowicz, J. R., & Masters, B. R. (2008). Principles of fluorescence spectroscopy. Journal of Biomedical Optics, 13(2), 029901. https://doi.org/10.1117/1.2904580
  • Liang, Y., Wu, G., Luo, T., Xie, H., Zuo, Q., Huang, P., Li, H., Chen, L., Lu, H., & Chen, Q. (2023). 10-Gingerol enhances the effect of taxol in triple-negative breast cancer via targeting ADRB2 signaling. Drug Design, Development and Therapy, 17, 129–142. https://doi.org/10.2147/DDDT.S390602
  • Lindup, W. (1987). Plasma protein binding of drugs: Some basic and clinical aspects. Progress in Drug Metabolism, 10, 141–185. https://cir.nii.ac.jp/crid/1571135650521788032
  • Liu, C. M., An, L., Wu, Z., Ouyang, A. J., Su, M., Shao, Z., Lin, Y., Liu, X., & Jiang, Y. (2022). 6-Gingerol suppresses cell viability, migration and invasion via inhibiting EMT, and inducing autophagy and ferroptosis in LPS-stimulated and LPS-unstimulated prostate cancer cells. Oncology Letters, 23(6), 187. https://doi.org/10.3892/ol.2022.13307
  • MacKichan, J. (1992).). Influence of protein binding and use of unbound (free) drug concentrations. Applied pharmacokinetics, principles of therapeutic drug monitoring (3rd ed., pp. 5–48). Applied Therapeutics.
  • Majewski, M., Ruiz-Carmona, S., & Barril, X. (2019). An investigation of structural stability in protein-ligand complexes reveals the balance between order and disorder. Communications Chemistry, 2(1), 110. https://doi.org/10.1038/s42004-019-0205-5
  • Man, W. H., Wilting, I., Heerdink, E. R., Hugenholtz, G. W. K., Bognár, T., Ten Berg, M. J., van Solinge, W. W., Egberts, T., & van Maarseveen, E. M. (2019). Unbound fraction of clozapine significantly decreases with elevated plasma concentrations of the inflammatory acute-phase protein alpha-1-acid glycoprotein. Clinical Pharmacokinetics, 58(8), 1069–1075. https://doi.org/10.1007/s40262-019-00744-6
  • Mukkavilli, R., Yang, C., Tanwar, R. S., Saxena, R., Gundala, S. R., Zhang, Y., Ghareeb, A., Floyd, S. D., Vangala, S., Kuo, W.-W., Rida, P. C. G., & Aneja, R. (2018). Pharmacokinetic-pharmacodynamic correlations in the development of ginger extract as an anticancer agent. Scientific Reports, 8(1), 3056. https://doi.org/10.1038/s41598-018-21125-2
  • Neelam, S., Gokara, M., Sudhamalla, B., Amooru, D. G., & Subramanyam, R. (2010). Interaction studies of coumaroyltyramine with human serum albumin and its biological importance. The Journal of Physical Chemistry B, 114(8), 3005–3012. https://doi.org/10.1021/jp910156k
  • Pan, Q., Liu, P., & Wan, M. (2023). 6-Gingerol attenuates sepsis-induced acute lung injury by suppressing NLRP3 inflammasome through Nrf2 activation. Folia Histochemica et Cytobiologica, 61(1), 68–80. https://doi.org/10.5603/FHC.a2023.0002
  • Peters Jr, T. (1995). All about albumin: Biochemistry, genetics and medical applications. Academic Press.
  • Petitpas, I., Bhattacharya, A. A., Twine, S., East, M., & Curry, S. (2001). Crystal structure analysis of warfarin binding to human serum albumin: Anatomy of drug site I. The Journal of Biological Chemistry, 276(25), 22804–22809. https://doi.org/10.1074/jbc.M100575200
  • Petitpas, I., Grüne, T., Bhattacharya, A. A., & Curry, S. (2001). Crystal structures of human serum albumin complexed with monounsaturated and polyunsaturated fatty acids. Journal of Molecular Biology, 314(5), 955–960. https://doi.org/10.1006/jmbi.2000.5208
  • Petitpas, I., Petersen, C. E., Ha, C. E., Bhattacharya, A. A., Zunszain, P. A., Ghuman, J., Bhagavan, N. V., & Curry, S. (2003). Structural basis of albumin-thyroxine interactions and familial dysalbuminemic hyperthyroxinemia. Proceedings of the National Academy of Sciences of the United States of America, 100(11), 6440–6445. https://doi.org/10.1073/pnas.1137188100
  • Purcell, M., Neault, J. F., & Tajmir-Riahi, H. A. (2000). Interaction of taxol with human serum albumin. Biochimica et Biophysica Acta, 1478(1), 61–68. https://doi.org/10.1016/s0167-4838(99)00251-4
  • Rasheed, M. A., Iqbal, M. N., Saddick, S., Ali, I., Khan, F. S., Kanwal, S., Ahmed, D., Ibrahim, M., Afzal, U., & Awais, M. (2021). Identification of lead compounds against Scm (fms10) in Enterococcus faecium using computer aided drug designing. Life (Basel, Switzerland), 11(2), 77. https://doi.org/10.3390/life11020077
  • Reddy, A. S., Amarnath, H. S. D., Bapi, R. S., Sastry, G. M., & Sastry, G. N. (2008). Protein ligand interaction database (PLID). Computational Biology and Chemistry, 32(5), 387–390. https://doi.org/10.1016/j.compbiolchem.2008.03.017
  • Rogóż, W., Lemańska, O., Pożycka, J., Owczarzy, A., Kulig, K., Muhammetoglu, T., & Maciążek-Jurczyk, M. (2022). Spectroscopic analysis of an antimalarial drug’s (quinine) influence on human serum albumin reduction and antioxidant potential. Molecules (Basel, Switzerland), 27(18), 6027. https://doi.org/10.3390/molecules27186027
  • Sahraei, A., Mohammadi, F., Boukherroub, R., & Szunerits, S. (2020). Formation of a highly stable and nontoxic protein corona upon interaction of human α-1-acid glycoprotein (AGP) with citrate-stabilized silver nanoparticles. Langmuir: The ACS Journal of Surfaces and Colloids, 36(35), 10321–10330. https://doi.org/10.1021/acs.langmuir.0c01018
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519. https://doi.org/10.1021/ct900587b
  • Simard, J. R., Zunszain, P. A., Ha, C. E., Yang, J. S., Bhagavan, N. V., Petitpas, I., Curry, S., & Hamilton, J. A. (2005). Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 102(50), 17958–17963. https://doi.org/10.1073/pnas.0506440102
  • Subramanyam, R., Goud, M., Sudhamalla, B., Reddeem, E., Gollapudi, A., Nellaepalli, S., Yadavalli, V., Chinnaboina, M., & Amooru, D. G. (2009). Novel binding studies of human serum albumin with trans-feruloyl maslinic acid. Journal of Photochemistry and Photobiology B Biology, 95, 81–88. https://doi.org/10.1016/j.jphotobiol.2009.01.002
  • Sudhamalla, B., Gokara, M., Ahalawat, N., Amooru, D. G., & Subramanyam, R. (2010). Molecular dynamics simulation and binding studies of β-sitosterol with human serum albumin and its biological relevance. The Journal of Physical Chemistry. B, 114(27), 9054–9062. https://doi.org/10.1021/jp102730p
  • Sudlow, G., Birkett, D., & Wade, D. (1976). Further characterization of specific drug binding sites on human serum albumin. Molecular Pharmacology, 12(6), 1052 1061. https://molpharm.aspetjournals.org/content/molpharm/12/6/1052.full.pdf
  • Sudlow, G., Birkett, D. J., & Wade, D. N. (1975). The characterization of two specific drug binding sites on human serum albumin. Molecular Pharmacology, 11(6), 824–832. https://www.ncbi.nlm.nih.gov/pubmed/1207674
  • Sugio, S., Kashima, A., Mochizuki, S., Noda, M., & Kobayashi, K. (1999). Crystal structure of human serum albumin at 2.5 + resolution. Protein Engineering, 12(6), 439–446. https://doi.org/10.1093/protein/12.6.439
  • Sułkowska, A. (2002). Interaction of drugs with bovine and human serum albumin. Journal of Molecular Structure, 614(1–3), 227–232. https://doi.org/10.1016/S0022-2860(02)00256-9
  • Tabachnick, M. (1964). Thyroxine-protein interactions. I. Binding of thyroxine to human serum albumin and modified albumins. The Journal of Biological Chemistry, 239(4), 1242–1249. https://www.ncbi.nlm.nih.gov/pubmed/14165933
  • Tayeh, N., Rungassamy, T., & Albani, J. R. (2009). Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins. Journal of Pharmaceutical and Biomedical Analysis, 50(2), 107–116. https://doi.org/10.1016/j.jpba.2009.03.015
  • Varshney, A., Sen, P., Ahmad, E., Rehan, M., Subbarao, N., & Khan, R. H. (2010). Ligand binding strategies of human serum albumin: How can the cargo be utilized? Chirality, 22(1), 77–87. https://doi.org/10.1002/chir.20709
  • Wang, B. L., Kou, S. B., Lin, Z. Y., & Shi, J. H. (2020). Insight into the binding behavior of ceritinib on human α-1 acid glycoprotein: Multi-spectroscopic and molecular modeling approaches. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 232, 118160. https://doi.org/10.1016/j.saa.2020.118160
  • Wang, B. L., Kou, S. B., Lin, Z. Y., Shi, J. H., & Liu, Y. X. (2020). Insights on the interaction mechanism of brigatinib to human α-1-acid glycoprotein: Experimental and computational approaches. International Journal of Biological Macromolecules, 157, 340–349. https://doi.org/10.1016/j.ijbiomac.2020.04.15
  • Wu, S., Zhu, J., Wu, G., Hu, Z., Ying, P., Bao, Z., Ding, Z., & Tan, X. (2022). 6-Gingerol alleviates ferroptosis and inflammation of diabetic cardiomyopathy via the Nrf2/HO-1 pathway. Oxidative Medicine and Cellular Longevity, 2022, 3027514–3027512. https://doi.org/10.1155/2022/3027514
  • Xue, Y., Zhang, M., Zheng, B., Zhang, Y., Chu, X., Liu, Y., Li, Z., Han, X., & Chu, L. (2021). [ 8]-Gingerol exerts anti-myocardial ischemic effects in rats via modulation of the MAPK signaling pathway and L-type Ca(2+) channels. Pharmacology Research & Perspectives, 9, e00852. https://doi.org/10.1002/prp2.852
  • Yeggoni, D. P., Gokara, M., Manidhar, D. M., Rachamallu, A., Nakka, S., Reddy, C. S., & Subramanyam, R. (2014). Binding and molecular dynamics studies of 7-hydroxycoumarin derivatives with human serum albumin and its pharmacological importance. Molecular Pharmaceutics, 11(4), 1117–1131. https://doi.org/10.1021/mp500051f
  • Yeggoni, D. P., Rachamallu, A., & Subramanyam, R. (2022). Comparative binding studies of bacosine with human serum albumin and alpha-1-acid glycoprotein biophysical evaluation and computational approach. Journal of Pharmaceutical and Biomedical Analysis, 209, 114478. https://doi.org/10.1016/j.jpba.2021.114478
  • Zanesco-Fontes, I., Silva, A. C. L., da Silva, P. B., Duarte, J. L., Di Filippo, L. D., Chorilli, M., Cominetti, M. R., & Martin, A. (2021). [10]-Gingerol-loaded nanoemulsion and its biological effects on triple-negative breast cancer cells. AAPS PharmSciTech, 22(5), 157. https://doi.org/10.1208/s12249-021-02006-w
  • Zhang, M., Chai, Y., & Han, B. (2019). Mechanistic and conformational studies on the interaction between myriocin and human serum albumin by fluorescence spectroscopy and molecular docking. Journal of Solution Chemistry, 48(6), 835–848. https://doi.org/10.1007/s10953-019-00895-x
  • Zick, S. M., Djuric, Z., Ruffin, M. T., Litzinger, A. J., Normolle, D. P., Alrawi, S., Feng, M. R., & Brenner, D. E. (2008). Pharmacokinetics of 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol and conjugate metabolites in healthy human subjects. Cancer Epidemiology, Biomarkers & Prevention, 17(8), 1930–1936. https://doi.org/10.1158/1055-9965.EPI-07-2934
  • Zsila, F., Bikádi, Z., & Simonyi, M. (2003). Probing the binding of the flavonoid, quercetin to human serum albumin by circular dichroism, electronic absorption spectroscopy and molecular modelling methods. Biochemical Pharmacology, 65(3), 447–456. https://doi.org/10.1016/s0006-2952(02)01521-6
  • Zunszain, P. A., Ghuman, J., Komatsu, T., Tsuchida, E., & Curry, S. (2003). Crystal structural analysis of human serum albumin complexed with hemin and fatty acid. BMC Structural Biology, 3(1), 6. https://doi.org/10.1186/1472-6807-3-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.