108
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Unveiling the molecular interaction of hepatitis B virus inhibitor, entecavir with human serum albumin through computational, microscopic and spectroscopic approaches

, , &
Received 11 Sep 2023, Accepted 23 Jan 2024, Published online: 05 Feb 2024

References

  • Abou-Zied, O. K., & Al-Shihi, O. I. K. (2008). Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. Journal of the American Chemical Society, 130(32), 10793–10801. https://doi.org/10.1021/ja8031289
  • Abubakar, M., Kandandapani, S., Mohamed, S. B., Abd Halim, A. A., & Tayyab, S. (2022). Shedding light on the molecular interaction between the hepatitis B virus inhibitor, clevudine, and human serum albumin: Thermodynamic, spectroscopic, microscopic, and in silico analyses. Journal of Molecular Liquids, 368(2), 120737. https://doi.org/10.1016/j.molliq.2022.120737
  • Abubakar, M., Mohamed, S. B., Abd Halim, A. A., & Tayyab, S. (2023). Use of computational and wet lab techniques to examine the molecular association between a potent hepatitis C virus inhibitor, PSI-6206 and human serum albumin. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 294, 122543. https://doi.org/10.1016/j.saa.2023.122543
  • Ahmad, S., Majeed, M. I., Nawaz, H., Javed, M. R., Rashid, N., Abubakar, M., Batool, F., Bashir, S., Kashif, M., Ali, S., Tahira, M., Tabbasum, S., & Amin, I. (2021). Characterization and prediction of viral loads of hepatitis B serum samples by using surface-enhanced Raman spectroscopy (SERS). Photodiagnosis and Photodynamic Therapy, 35, 102386. https://doi.org/10.1016/j.pdpdt.2021.102386
  • Alonso, H., Bliznyuk, A. A., & Gready, J. E. (2006). Combining docking and molecular dynamic simulations in drug design. Medicinal Research Reviews, 26(5), 531–568. https://doi.org/10.1002/med.20067
  • Anitha, S., Saranya, V., Shankar, R., & Sasirekha, V. (2022). Structural exploration of interactions of (+) catechin and (−) epicatechin with bovine serum albumin: Insights from molecular dynamics and spectroscopic methods. Journal of Molecular Liquids, 348, 118026. https://doi.org/10.1016/j.molliq.2021.118026
  • Ansari, S. S., Khan, R. H., & Naqvi, S. (2018). Probing the intermolecular interactions into serum albumin and anthraquinone systems: A spectroscopic and docking approach. Journal of Biomolecular Structure & Dynamics, 36(13), 3362–3375. https://doi.org/10.1080/07391102.2017.1388284
  • Atkins, P., & de Paula, J. (2006). Physical Chemistry for the Life Sciences. W.H. Freeman and Company.
  • Bi, S., Ding, L., Tian, Y., Song, D., Zhou, X., Liu, X., & Zhang, H. (2004). Investigation of the interaction between flavonoids and human serum albumin. Journal of Molecular Structure, 703(1–3), 37–45. https://doi.org/10.1016/j.molstruc.2004.05.026
  • Bohnert, T., & Gan, L.-S. (2013). Plasma protein binding: From discovery to development. Journal of Pharmaceutical Sciences, 102(9), 2953–2994. https://doi.org/10.1002/jps.23614
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Chen, Y.-C., Wang, H.-M., Niu, Q.-X., Ye, D.-Y., & Liang, G.-W. (2016). Binding between saikosaponin C and human serum albumin by fluorescence spectroscopy and molecular docking. Molecules (Basel, Switzerland), 21(2), 153. https://doi.org/10.3390/molecules21020153
  • Costa-Tuna, A., Chaves, O. A., Loureiro, R. J., Pinto, S., Pina, J., & Serpa, C. (2023). Interaction between a water-soluble anionic porphyrin and human serum albumin unexpectedly stimulates the aggregation of the photosensitizer at the surface of the albumin. International Journal of Biological Macromolecules, 255, 128210. https://doi.org/10.1016/j.ijbiomac.2023.128210
  • Curry, S., Mandelkow, H., Brick, P., & Franks, N. (1998). Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nature Structural Biology, 5(9), 827–835. https://doi.org/10.1038/1869
  • Fasano, M., Curry, S., Terreno, E., Galliano, M., Fanali, G., Narciso, P., Notari, S., & Ascenzi, P. (2005). The extraordinary ligand binding properties of human serum albumin. IUBMB Life, 57(12), 787–796. https://doi.org/10.1080/15216540500404093
  • Gan, R., Zhao, L., Sun, Q., Tang, P., Zhang, S., Yang, H., He, J., & Li, H. (2018). Binding behavior of trelagliptin and human serum albumin: Molecular docking, dynamical simulation, and multi-spectroscopy. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 202, 187–195. https://doi.org/10.1016/j.saa.2018.1005.1049
  • Hansson, T., Oostenbrink, C., & van Gunsteren, W. (2002). Molecular dynamics simulations. Current Opinion in Structural Biology, 12(2), 190–196. https://doi.org/10.1016/S0959-440X(02)00308-1
  • Hashempour, S., Shahabadi, N., Adewoye, A., Murphy, B., Rouse, C., Salvatore, B. A., Stratton, C., & Mahdavian, E. (2020). Binding studies of AICAR and human serum albumin by spectroscopic, theoretical, and computational methodologies. Molecules (Basel, Switzerland), 25(22), 5410. https://doi.org/10.3390/molecules25225410
  • Honkoop, P., & De Man, R. A. (2003). Entecavir: A potent new antiviral drug for hepatitis B. Expert Opinion on Investigational Drugs, 12(4), 683–688. https://doi.org/10.1517/13543784.12.4.683
  • Kabir, M. Z., Benbekhti, Z., Ridzwan, N. F. W., Merrouche, R., Bouras, N., Mohamad, S. B., & Tayyab, S. (2020). Biophysical and in silico investigations of the molecular association between a potent RNA polymerase inhibitor, thiolutin and human serum albumin. Journal of Molecular Liquids, 303, 112648. https://doi.org/10.1016/j.molliq.2020.112648
  • Kabir, M. Z., Tayyab, H., Erkmen, C., Kurbanoglu, S., Mohamad, S. B., & Bengi, U. S. L. U. (2023). Characterization of Climbazole–Bovine serum albumin interaction by experimental and in silico approaches. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 288, 122197. https://doi.org/10.1016/j.saa.2022.122197
  • Kandandapani, S., Kabir, M. Z., Ridzwan, N. F. W., Mohamad, S. B., & Tayyab, S. (2021). Biomolecular interaction mechanism of an anticancer drug, pazopanib with human serumalbumin: A multi-spectroscopic and computational approach. Journal of Biomolecular Structure and Dynamics, 40(18), 8312–8323. https://doi.org/10.1080/07391102.2021.1911850
  • Kelly, S. M., Jess, T. J., & Price, N. C. (2005). How to study proteins by circular dichroism. Biochimica et Biophysica Acta, 1751(2), 119–139. https://doi.org/10.1016/j.bbapap.2005.06.005
  • Kew, M. C. (2010). Epidemiology of chronic hepatitis B virus infection, hepatocellular carcinoma, and hepatitis B virus-induced hepatocellular carcinoma. Pathologie-biologie, 58(4), 273–277. https://doi.org/10.1016/j.patbio.2010.01.005
  • Khalili, L., & Dehghan, G. (2019). A comparative spectroscopic, surface plasmon resonance, atomic force microscopy and molecular docking studies on the interaction of plant-derived conferone with serum albumins. Journal of Luminescence, 211, 193–202. https://doi.org/10.1016/j.jlumin.2019.03.048
  • Kharazian, B., Ahmad, A., & Mabudi, A. (2021). A molecular dynamics study on the binding of gemcitabine to human serum albumin. Journal of Molecular Liquids, 337, 116496. https://doi.org/10.1016/j.molliq.2021.116496
  • Kragh-Hansen, U., Chuang, V. T. G., & Otagiri, M. (2002). Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biological & Pharmaceutical Bulletin, 25(6), 695–704. https://doi.org/10.1248/bpb.25.695
  • Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy (Third Edition). Springer.
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Lin, X., Li, X., & Lin, X. (2020). A review on applications of computational methods in drug screening and design. Molecules (Basel, Switzerland), 25(6), 1375. https://doi.org/10.3390/molecules25061375
  • Makarska-Bialokoz, M., & Lipke, A. (2019). Study of the binding interactions between uric acid and bovine serum albumin using multiple spectroscopic techniques. Journal of Molecular Liquids, 276, 595–604. https://doi.org/10.1016/j.molliq.2018.12.026
  • Martínez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PloS One, 10(3), e0119264. https://doi.org/10.1371/journal.pone.011926
  • Möller, M., & Denicola, A. (2002). Protein tryptophan accessibility studied by fluorescence quenching. Biochemistry and Molecular Biology Education, 30(3), 175–178. https://doi.org/10.1002/bmb.2002.494030030035
  • Musa, K. A., Ning, T., Mohamad, S. B., & Tayyab, S. (2020). Intermolecular recognition between pyrimethamine, an antimalarial drug and human serum albumin: Spectroscopic and docking study. Journal of Molecular Liquids, 311, 113270. https://doi.org/10.1016/j.molliq.2020.113270
  • Nasruddin, A. N., Feroz, S. R., Mukarram, A. K., Mohamad, S. B., & Tayyab, S. (2016). Fluorometric and molecular docking investigation on the binding characteristics of SB202190 to human serum albumin. Journal of Luminescence, 174, 77–84. https://doi.org/10.1016/j.jlumin.2016.02.004
  • Painter, L., M. Harding, M., & J. Beeby, P. (1998). Synthesis and interaction with human serum albumin of the first 3,18-disubstituted derivative of bilirubin. Journal of the Chemical Society, Perkin Transactions 1, 1(18), 3041–3044. https://doi.org/10.1039/a803429j
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Petruzziello, A. (2018). Suppl-1, M3: Epidemiology of hepatitis B virus (HBV) and hepatitis C virus (HCV) related hepatocellular carcinoma. The Open Virology Journal, 12(1), 26–32. https://doi.org/10.2174/1874357901812010026
  • Rabbani, G., Baig, M. H., Jan, A. T., Ju Lee, E., Khan, M. V., Zaman, M., Farouk, A.-E., Khan, R. H., & Choi, I. (2017a). Binding of erucic acid with human serum albumin using a spectroscopic and molecular docking study. International Journal of Biological Macromolecules, 105(Pt 3), 1572–1580. https://doi.org/10.1016/j.ijbiomac.2017.04.051
  • Rabbani, G., Baig, M. H., Lee, E. J., Cho, W. K., Ma, J. Y., & Choi, I. (2017b). Biophysical study on the interaction between eperisone hydrochloride and human serum albumin using spectroscopic, calorimetric, and molecular docking analyses. Molecular Pharmaceutics, 14(5), 1656–1665. https://doi.org/10.1021/acs.molpharmaceut.6b01124
  • Rabbani, G., Lee, E. J., Ahmad, K., Baig, M. H., & Choi, I. (2018). Binding of tolperisone hydrochloride with human serum albumin: Effects on the conformation, thermodynamics, and activity of HSA. Molecular Pharmaceutics, 15(4), 1445–1456. https://doi.org/10.1021/acs.molpharmaceut.7b00976
  • Raffa, R. B. (2003). Experimental approaches to determine the thermodynamics of protein-ligand interactions. In H. J. Böhm & G. Schneider (Eds.), Protein-ligand interactions: From molecular recognition to drug design (pp. 51–72). Wiley-VCH Verlag.
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20(11), 3096–3102. https://doi.org/10.1021/bi00514a017
  • Shahabadi, N., Hadidi, S., & Feizi, F. (2015). Study on the interaction of antiviral drug ‘Tenofovir’ with human serum albumin by spectral and molecular modeling methods. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 138, 169–175. https://doi.org/10.1016/j.saa.2014.10.070
  • Shahabadi, N., Zendehcheshm, S., Momeni, B. Z., & Abbasi, R. (2020). Antiproliferative activityand human serum albumin binding propensity of [SnMe2Cl2 (bu2bpy)]: Multi- spectroscopic analysis, atomic force microscopy, and computational studies. Journal of Coordination Chemistry, 73(8), 1349–1376. https://doi.org/10.1080/00958972.2020.1775821
  • Shahraki, S., Delarami, H. S., Razmara, Z., & Heidari, A. (2024). Tracking the binding site of anticancer drug fluxoridine with Fe-related proteins to achieve intelligent drug delivery. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 306, 123569. https://doi.org/10.1016/j.saa.2023.123569
  • Shahraki, S., Razmara, Z., Delarami, H. S., & Poorsargol, M. (2023a). Probing the combination of erlotinib hydrochloride, an anticancer drug, and human serum albumin. Spectroscopic, molecular docking and molecular dynamic analysis. Luminescence: The Journal of Biological and Chemical Luminescence, 38(6), 772–782. https://doi.org/10.1002/bio.4506
  • Shahraki, S., Shiri, F., & Razmara, Z. (2023b). Improving enzymatic performance of antioxidant enzyme catalase in combination with [Mn (phen)2Cl.H2O]Cl.tu complex. Applied Organometallic Chemistry, 37(4), e7061. https://doi.org/10.1002/aoc.7061
  • Snow, C. D., Sorin, E. J., Rhee, Y. M., & Pande, V. S. (2005). How well can simulation predict protein folding kinetics and thermodynamics? Annual Review of Biophysics and Biomolecular Structure, 34(1), 43–69. https://doi.org/10.1146/annurev.biophys.34.040204.144447
  • Sreerama, N., & Woody, R. W. (2000). Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Analytical Biochemistry, 287(2), 252–260. https://doi.org/10.1006/abio.2000.4880
  • Sudlow, G., Birkett, D., & Wade, D. (1976). Further characterization of specific drug binding sites on human serum albumin. Molecular Pharmacology, 12(6), 1052–1061. PubMed 1004490.
  • Tayyab, S., Magesvaran, M. K. A., Kabir, M. Z., Ridzwan, N. F. W., & Mohamad, S. B. (2021). Biophysical and computational view on the in vitro combination between an anticancer drug, saracatinib and human serum albumin. Journal of Biomolecular Structure & Dynamics, 39(10), 3565–3575. https://doi.org/10.1080/07391102.2020.1766571
  • Tayyab, S., Min, L. H., Kabir, M., Kandandapani, S., Ridzwan, N. F. W., & Mohamad, S. B. (2020). Exploring the interaction mechanism of a dicarboxamide fungicide, iprodione with bovine serum albumin. Chemical Papers, 74(5), 1633–1646. https://doi.org/10.1007/s11696-019-01015-1
  • Tayyab, S., Sam, S. E., Kabir, M. Z., Ridzwan, N. F. W., & Mohamad, S. B. (2019). Molecular interaction study of an anticancer drug, ponatinib with human serum albumin using spectroscopic and molecular docking methods. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 214, 199–206. https://doi.org/10.1016/j.saa.2019.02.028
  • Twine, S., Gore, M., Morton, P., Fish, B., Lee, A., & East, J. (2003). Mechanism of binding of warfarin enantiomers to recombinant domains of human albumin. Archives of Biochemistry and Biophysics, 414(1), 83–90. https://doi.org/10.1016/S0003-9861(1003)00173-00175
  • Tyukodi, L., Zsidó, B. Z., Hetényi, C., Kőszegi, T., Huber, I., & Rozmer, Z. (2023). Serum albumin binding studies on antiproliferative cyclic C5-curcuminoid derivatives using spectroscopic methods and molecular modelling. Journal of Molecular Structure, 1287, 135761. https://doi.org/10.1016/j.molstruc.2023.135761
  • Vilar, S., Cozza, G., & Moro, S. (2008). Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Current Topics in Medicinal Chemistry, 8(18), 1555–1572. https://doi.org/10.2174/156802608786786624
  • Ware, W. R. (1962). Oxygen quenching of fluorescence in solution: An experimental study of the diffusion process. The Journal of Physical Chemistry, 66(3), 455–458. https://doi.org/10.1021/j100809a020
  • Whitmore, L., & Wallace, B. (2004). DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Research, 32, W668–W673. https://doi.org/10.1093/nar/gkh1371
  • York, D. M., Darden, T. A., & Pedersen, L. G. (1993). The effect of long‐range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods. The Journal of Chemical Physics, 99(10), 8345–8348. https://doi.org/10.1063/1.465608
  • Zhang, H. X., Zhou, D., & Xia, Q. H. (2018). Study on the molecular recognition action of lamivudine by human serum albumin. Journal of Molecular Recognition: JMR, 31(7), e2705. https://doi.org/10.1002/jmr.2705
  • Zhang, Z., Yang, M., Yi, J., Zhu, Q., Huang, C., Chen, Y., Li, J., Yang, B., & Zhao, X. (2019). Comprehensive insights into the interactions of two emerging bromophenolic DBPs with human serum albumin by multispectroscopy and molecular docking. ACS Omega. 4(1), 563–572. https://doi.org/10.1021/acsomega.8b03116
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359–2368. https://doi.org/10.1002/jcc.21816

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.