175
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Insight into carbohydrate metabolism, protein quantification and mineral regulation in wheat (Triticum aestivum L.) by the action of green synthesized silver nanoparticles (AgNPs) against heat stress

, , , , , , , , & show all
Received 31 Jul 2023, Accepted 23 Jan 2024, Published online: 06 Feb 2024

References

  • Akter, N., & Islam, M. R. (2017). Heat stress effects and management in wheat. A review. Agronomy for Sustainable Development, 37(5), 37. https://doi.org/10.1007/s13593-017-0443-9.hal-02155155
  • Altenbach, S. B., Tanaka, C. K., Whitehand, L. C., & Vensel, W. H. (2016). Effects of post-anthesis fertilizer on the protein composition of the gluten polymer in a US bread wheat. Journal of Cereal Science, 68, 66–73. https://doi.org/10.1016/j.jcs.2015.12.002
  • Anand, P. K., Anand, E., Bleck, C. K. E., Anes, E., & Griffiths, G. (. (2010). Exosomal HSP70 Induces a Pro-inflammatory response to foreign particles including mycobacteria. PLoS One, 5(4), e10136. https://doi.org/10.1371/journal.pone.0010136
  • Aslani, F., Bagheri, S., Julkapli, N. M., Juraimi, A. S., Hashemi, F. S. G., & Baghdadi, A. (2014). Effects of engineered nonmaterial’s on plants growth: An overview. Scientific World Journal, 2014, 1–28. https://doi.org/10.1155/2014/641759
  • Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., Kimball, B. A., Ottman, M. J., Wall, G. W., White, J. W., Reynolds, M. P., Alderman, P. D., Prasad, P. V. V., Aggarwal, P. K., Anothai, J., Basso, B., Biernath, C., Challinor, A. J., De Sanctis, G., … Zhu, Y. (2015). Rising temperatures reduce global wheat production. Nature Climate Change, 5(2), 143–147. https://doi.org/10.1038/nclimate2470
  • Bergkamp, B., Impa, S. M., Asebedo, A. R., Fritz, A. K., & Jagadish, S. V. K. (2018). Prominent winter wheat varieties response to post-flowering heat stress under controlled chambers and field based heat tents. Field Crops Research, 222, 143–152. https://doi.org/10.1016/j.fcr.2018.03.009
  • Bhat, T. M., & Kudesi, R. (2011). Evaluation of genetic diversity in five different species of family solanaceae using cytological characters and protein profiling. Genetic Engineering and Biotechnology Journal, 11, 1–8.
  • Bradford, M. M. (1976). A rapid and sensitive method for the quan-titation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1006/abio.1976.9999
  • Chen, X., Lin, S., Liu, Q., Huang, J., Zhang, W., Lin, J., Wang, Y., Ke, Y., & He, H. (2014). Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress. Biochimica et Biophysica Acta, 1844(4), 818–828. https://doi.org/10.1016/j.bbapap.2014.02.010
  • Cossani, C. M., & Reynolds, M. P. (2012). Physiological trait for improving heat tolerance in wheat. Plant Physiology, 160(4), 1710–1718. https://doi.org/10.1104/pp.112.207753
  • Ditta, A. (2012). How helpful is nanotechnology in agriculture? Advances in Natural Sciences: Nanoscience and Nanotechnology, 3(3), 2–33.
  • Ejaz, M., Raja, N. I., Mashwani, Z.-U.-R., Ahmad, M. S., Hussain, M., & Iqbal, M. (2018). Effect of silver nanoparticles and silver nitrate on growth of rice under biotic stress. IET Nanobiotechnology, 12(7), 927–932. https://doi.org/10.1049/iet-nbt.2018.0057
  • El Habti, A., Fleury, D., Jewell, N., Garnett, T., & Tricker, P. J. (2020). Tolerance of combined drought and heat stress is associated with transpiration maintenance and water-soluble carbohydrates in wheat grains. Frontiers in Plant Science, 11, 568–693.
  • Fahad, S., Hussain, S., Saud, S., Hassan, S., Tanveer, M., Ihsan, M. Z., Shah, A. N., Ullah, A., Khan, F., Ullah, S., Alharby, H., Nasim, W., Wu, C., Huang, J. (2016) Combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiology and Biochemistry: PPB, 103, 191–198 https://doi.org/10.1016/j.plaphy.2016.03.001
  • Farooq, J., Khaliq, I., & Mahmood, A. (2015). Evaluation of some wheat hybrids under normal and heat stress conditions. Triticeae Genomics and Genetics, 5, 1–11. https://doi.org/10.5376/tgg.2014.05.0002
  • Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O'Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., & Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337–342. https://doi.org/10.1038/nature10452
  • Food and Agriculture Organization of the United Nations. (2020). Crop prospects and food situation. Quarterly Global Report, no. 2, July, Rome. https://doi.org/10.4060/ca9803en
  • Fragkostefanakis, S., Röth, S., Schleiff, E., & Scharf, K.-D. (2015). Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. Plant, Cell & Environment, 38(9), 1881–1895. https://doi.org/10.1111/pce.12396
  • Gardea-Torresdey, J. L., Rico, C. M., & White, J. C. (2014). Trophic transfer, transformation, and and impact of engineered nanomaterials in terrestrial environments. Environmental Science & Technology, 48(5), 2526–2540. https://doi.org/10.1021/es4050665
  • Guo, B. J., Luan, H., Lin, S., Lv, C., Zhang, X., & Xu, R. (2016). Comparative proteomic analysis of two barley cultivars (Hordeum vulgare L.) with contrasting grain protein content. Frontiers in Plant Science, 7, 542.
  • Gupta, R., Somanathan, E., & Dey, S. (2017). Global warming and local air pollution have reduced wheat yields in India. Climatic Change, 140(3-4), 593–604. https://doi.org/10.1007/s10584-016-1878-8
  • Harsh, A., Sharma, Y. K., Joshi, U., Rampuria, S., Singh, G., Kumar, S., & Sharma, R. (2016). Effect of short-term heat stress on total sugars, proline and some antioxidant enzymes in moth bean (Vigna aconitifolia). Annals of Agricultural Sciences, 61(1), 57–64. https://doi.org/10.1016/j.aoas.2016.02.001
  • Hassan, N. S., Salah El Din, T. A., Hendawey, M. H., Borai, I. H., & Mahdi, A. A. (2018). Magnetite and zinc oxide nanoparticles alleviated heat stress in wheat plants. Current Nanomaterials, 3(1), 32–43. https://doi.org/10.2174/2405461503666180619160923
  • Hedge, J. E., & Hofreiter, B. T. (1962). Methods in carbohydrate chemistry. Academic Press, 17, 420.
  • Hernandez-Viezcas, J. A., Castillo-Michel, H., Andrews, J. C., Cotte, M., Rico, C., Peralta-Videa, J. R., Ge, Y., Priester, J. H., Holden, P. A., & Gardea-Torresdey, J. L. (2013). In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO Nanoparticles in soil cultivated soybean (Glycine max). ACS Nano, 7(2), 1415–1423. https://doi.org/10.1021/nn305196q
  • Hu, T., Liu, S., Amombo, E., & Fu, J. (2015). Stress memory induced rearrangements of HSP transcription, photosystem II photochemistry and metabolism of tall fescue (Festuca arundinacea Schreb) in response to high-temperature stress. Frontiers in Plant Science, 6, 1–13.
  • Hussain, M., Raja, N. I., Iqbal, M., & Aslam, S. (2018). Applications of plant flavonoids in the green synthesis of colloidal silver nanoparticles and impacts on human health. Iranian Journal of Science and Technology, Transactions A: Science, 43(3), 1381–1392. https://doi.org/10.1007/s40995-017-0431-6
  • Hussain, M., Raja, N. I., Mashwani, Z. R., Iqbal, M., Sabir, S., & Yasmeen, F. (2017). In vitro seed germination and biochemical profiling of Artemisia absinthium exposed to various metallic nanoparticles. 3 Biotech, 7(2), 101–108. https://doi.org/10.1007/s13205-017-0741-6
  • IPCC. (2018). Summary for Policymakers. In V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani,   Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (Eds.), Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (32 pp.). World Meteorological Organization.
  • Iqbal, M., Asif, S., Ilyas, N., Raja, N. I., Hussain, M., Shabir, S., Faz, M. N. A., & Rauf, A. (2016). Effect of plant derived smoke on germination and post germination expression of wheat (Triticum aestivum L). American Journal of Plant Sciences, 7(6), 806–813.) https://doi.org/10.4236/ajps.2016.76075
  • Iqbal, M., Raja, N. I., Mashwani, Z. R., Hussain, H., Ejaz, M., & Yasmeen, F. (2017). Effect of silver nanoparticles on growth of wheat under heat stress. Iranian Journal of Science and Technology, Transactions A: Science, 43(2), 387–395. https://doi.org/10.1007/s40995-017-0417-4
  • Iqbal, M., Raja, N. I., Mashwani, Z. R., Wattoo, F. H., Hussain, M., & Ejaz, M. (2018). Assessment of green synthesized silver nanoparticles in wheat seedlings at the anatomical level in relation to their uptake, translocation, and accumulation. Iranian Journal of Science and Technology, Transactions A: Science, 43(4), 1551–1561. https://doi.org/10.1007/s40995-018-0639-0
  • Iqbal, M., Raja, N. I., Mashwani, Z. U., Wattoo, F. H., Hussain, M., Ejaz, M., & Saira, H. (2019). Assessment of AgNPs exposure on physiological and biochemical changes and antioxidative defence system in wheat (Triticum aestivum L.) under heat stress. IET Nanobiotechnology, 13(2), 230–236. https://doi.org/10.1049/iet-nbt.2018.5041
  • Keskin, B. C. (2019). Quantitative mRNA expression profiles of germin-like and extensin-like proteins under drought stress in Triticum aestivum. International Journal of Life Sciences and Biotechnology, 2(2), 2651–4621.
  • Khandel, P., & Shahi, S. K. (2018). Mycogenic nanoparticles and their bio-prospective applications: Current status and future challenges. Journal of Nanostructure in Chemistry, 8(4), 369–391. https://doi.org/10.1007/s40097-018-0285-2
  • Kumari, M., Pudake, R. N., Singh, V. P., & Joshi, A. K. (2013). Association of stay green trait with canopy temperature depression and yield traits under terminal heat stress in wheat (Triticum aestivum L.). Euphytica, 190(1), 87–97. https://doi.org/10.1007/s10681-012-0780-3
  • Kütük, N. (2021). Mesoporous silica nanoparticles, methods of preparation and use of bone tissue engineering. International Journal of Life Sciences and Biotechnology, 4(3), 507–522. https://doi.org/10.38001/ijlsb.880711
  • Liu, Y., Zhang, P., Li, M., Chang, L., Cheng, H., Chai, S., & Yang, D. (2020). Dynamic responses of accumulation and remobilization of water soluble carbohydrates in wheat stem to drought stress. Plant Physiology and Biochemistry: PPB, 155, 262–270. https://doi.org/10.1016/j.plaphy.2020.07.024
  • Ma, D., Sun, D., Wang, C., Qin, H., Ding, H., Li, Y., & Guo, T. (2016). Silicon application alleviates drought stress in wheat through transcriptional regulation of multiple antioxidant defense pathways. Journal of Plant Growth Regulation, 35(1), 1–10. https://doi.org/10.1007/s00344-015-9500-2
  • Massart, D. L., Vandeginste, B. G. M., Buydens, L. M. C., Jong, S. D., Lewi, P. J., & Smeyers- Verbeke, J. (1997). Handbook of chemometrics and qualimetrics: Part A. Elsevier Science.
  • Meiri, D., & Breiman, A. (2009). Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs. The Plant Journal: For Cell and Molecular Biology, 59(3), 387–399. https://doi.org/10.1111/j.1365-313X.2009.03878.x
  • Mirzajani, F., Askari, H., Hamzelou, S., Farzaneh, M., & Ghassempour, A. (2013). Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicology and Environmental Safety, 88, 48–54.
  • Mukti, R P., M R., Ghimire, S., Pandey, M. P., Dhakal, K. H., Thapa, D. B., & Poudel, H. K. (2020). Evaluation of wheat genotypes under irrigated, heat stress and drought conditions. Journal of Biology and Today's World, 9(1), 212–224.
  • Nagar, S., Singh, V. P., Arora, A., Dhakar, R., & Ramakrishnan, S. (2015). Assessment of terminal heat tolerance ability of wheat genotypes based on physiological traits using multivariate analysis. Acta Physiologiae Plantarum, 37(12), 257. https://doi.org/10.1007/s11738-015-2017-2
  • Narayanan, S., Prasad, P. V. V., Fritz, A. K., Boyle, D. L., & Gill, B. S. (2015). Impact of high night-time and high daytime temperature stress on winter wheat. Journal of Agronomy and Crop Science, 201(3), 206–218. https://doi.org/10.1111/jac.12101
  • Ohama, N., Sato, H., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2017). Transcriptional regulatory network of plant heat stress response. Trends in Plant Science, 22(1), 53–65. https://doi.org/10.1016/j.tplants.2016.08.015
  • Özyiğit, İ. İ., Baktibekova, D., Hocaoğlu-Özyiğit, A., Kurmanbekova, G., Chekirov, K., & Yalçin, İ. E. (2021). The effects of cadmium on growth, some anatomical and physiological parameters of wheat (Triticum aestivum L.). International Journal of Life Sciences and Biotechnology, 4(2), 235–253. https://doi.org/10.38001/ijlsb.833553
  • Padula, M. P., Berry, I. J., O Rourke, M. B., Raymond, B. B. A., Santos, J., & Djordjevic, S. P. (2017). Comprehensive guide for performing sample preparation and top-down protein analysis. Proteomes, 5(2), 11. https://doi.org/10.3390/proteomes5020011
  • Patra, P., Choudhury, S. R., Mandal, S., Basu, A., Goswani, A., Gogoi, R., Srivastava, C., Kumar, R., & Gopal, M. (2013). Effect of sulfur and ZnO nanoparticles on stress physiology and plant (Vigna radiata) nutrition. Advanced Nanomaterials and Nanotechnology, 31, 299–307.
  • Rakszegi, M., Darkó, É., Lovegrove, A., Molnár, I., Láng, L., Bedő, Z., Molnár-Láng, M., & Shewry, P. (2019). Drought stress affects the protein and dietary fiber content of whole meal wheat flour in wheat/Aegilops addition lines. PLoS One, 14(2), e0211892. https://doi.org/10.1371/journal.pone.0211892
  • Rangan, P., Furtado, A., & Henry, R. (2019). Differential response of wheat genotypes to heat stress during grain filling. Experimental Agriculture, 55(5), 818–827. https://doi.org/10.1017/S0014479718000406
  • Salama, H. M. H. (2012). Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International Research Journal of Biotechnology, 3, 190–197.
  • Sattar, A., Sher, A., Ijaz, M., Ul-Allah, S., Rizwan, M. S., Hussain, M., Jabran, K., & Cheema, M. A. (2020). Terminal drought and heat stress alter physiological and biochemical attributes in flag leaf of bread wheat. PLoS One, 15(5), e0232974. https://doi.org/10.1371/journal.pone.0232974
  • Sharma, I., Tyagi, B. S., Singh, G., Venkatesh, K., & Gupta, O. P. (2015). Enhancing wheat production- a global perspective. The Indian Journal of Agricultural Sciences, 85, 3–13.
  • Song, U., Shin, M., Lee, G., Roh, J., Kim, Y., & Lee, E. J. (2013). Functional analysis of TiO2 nanoparticle toxicity in three plant species. Biological Trace Element Research, 155(1), 93–103. https://doi.org/10.1007/s12011-013-9765-x
  • Sramkova, Z., & Gregova, E. (2009). Chemical composition and nutritional quality of wheat grain. Acta Chimica Slovaca, 2(1), 115–138.
  • Talukder, A. S. M. H. M., McDonald, G. K., & Gill, G. S. (2013). Effect of short-term heat stress prior to flowering and at early grain set on the utilization of water-soluble carbohydrate by wheat genotypes. Field Crops Research, 147, 1–11. https://doi.org/10.1016/j.fcr.2013.03.013
  • Tarafdar, J. C., Sharma, S., & Raliya, R. (2013). Nanotechnology: Interdisciplinary science of applications. African Journal of Biotechnology, 12(3), 219–226. https://doi.org/10.5897/AJB12.2481
  • Tricker, P. J., ElHabti, A., Schmidt, J., & Fleury, D. (2018). The physiological and genetic basis of combined drought and heat tolerance in wheat. Journal of Experimental Botany, 69(13), 3195–3210. https://doi.org/10.1093/jxb/ery081
  • Tripathi, A., Tripathi, D. K., Chauhan, D. K., Kumar, N., & Singh, G. S. (2016). Paradigms of climate change impacts on some major food sources of the world: A review on current knowledge and future prospect. Agriculture Ecosystems and Environment, 216, 356–373. https://doi.org/10.1016/j.agee.2015.09.034
  • Vensel, W. H., Tanaka, C. K., & Altenbach, S. B. (2014). Protein composition of wheat gluten polymer fractions determined by quantitative two-dimensional gel electrophoresis and tandem mass spectrometry. Proteome Science, 12(1), 8. https://doi.org/10.1186/1477-5956-12-8
  • Wang, J., Gao, X., Dong, J., Tian, X., Wang, J., Palta, J. A., Xu, S., Fang, Y., & Wang, Z. (2020). Over-expression of the heat-responsive wheat gene tahsp23.9 in transgenic arabidopsis conferred tolerance to heat and salt stress. Frontiers in Plant Science, 11, 243. https://doi.org/10.3389/fpls.2020.00243
  • Wang, L., Guo, Y., Jia, L., Chu, H., Zhou, S., Chen, K., Wu, D., & Zhao, L. (2014). Hydrogen peroxide acts upstream of nitric oxide in the heat shock pathway in Arabidopsis seedlings. Plant Physiology, 164(4), 2184–2196. https://doi.org/10.1104/pp.113.229369
  • Wiesner, M., Lowry, R. G. V., Alvarez, P., Dionysiou, D., & Biswas, P. (2006). Assessing the risks of manufactured nanomaterials. Environmental Science & Technology, 40(14), 4336–4345. https://doi.org/10.1021/es062726m
  • Yasmeen, F., Raja, N. I., Razzaq, A., & Komatsu, S. (2017). Proteomic and physiological analyses of wheat seeds exposed to copper and iron nanoparticles. Biochimica et Biophysica Acta. Proteins and Proteomics, 1865(1), 28–42. https://doi.org/10.1016/j.bbapap.2016.10.001
  • Zhang, L., Hu, W., Gao, Y., Pan, H., & Zhang, Q. (2018). A cytosolic class II small heat shock protein, PfHSP17.2, confers resistance to heat, cold, and salt stresses in transgenic Arabidopsis. Genetics and Molecular Biology, 41(3), 649–660. https://doi.org/10.1590/1678-4685-GMB-2017-0206
  • Zhang, F., Lou, H., Guo, D., Zhang, R., Su, M., Hou, Z., Zhou, H., Liang, R., Xie, C., You, M., & Li, B. (2018). Identifying changes in the wheat kernel proteome under heat stress using iTRAQ. The Crop Journal, 6(6), 600–610. https://doi.org/10.1016/j.cj.2018.04.003
  • Zhao, L., Sun, Y., Hernandez-Viezcas, J. A., Servin, A., Hong, J., Niu, G., Peralta-Videa, J. R., Duarte-Gardea, M., & Gardea-Torresdey, J. L. (2014). Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: A life cycle study. Journal of Agricultural and Food Chemistry, 61(49), 11945–11951. https://doi.org/10.1021/jf404328e

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.