236
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A comprehensive bioinformatics analysis identifies mitophagy biomarkers and potential Molecular mechanisms in hypertensive nephropathy

, , , , , , , & show all
Received 31 Jul 2023, Accepted 05 Dec 2023, Published online: 09 Feb 2024

References

  • Aibar, S., González-Blas, C. B., Moerman, T., Huynh-Thu, V. A., Imrichova, H., Hulselmans, G., Rambow, F., Marine, J.-C., Geurts, P., Aerts, J., van den Oord, J., Atak, Z. K., Wouters, J., & Aerts, S. (2017). SCENIC: Single-cell regulatory network inference and clustering. Nature Methods, 14(11), 1083–1086. https://doi.org/10.1038/nmeth.4463
  • Atwood, D. J., Brown, C. N., Holditch, S. J., Pokhrel, D., Thorburn, A., Hopp, K., & Edelstein, C. L. (2020). The effect of trehalose on autophagy-related proteins and cyst growth in a hypomorphic Pkd1 mouse model of autosomal dominant polycystic kidney disease. Cellular Signalling, 75, 109760. https://doi.org/10.1016/j.cellsig.2020.109760
  • Bai, J., Ma, Q., Lan, Y., Chen, Y., Ma, S., Li, J., Liu, C., Fu, Z., Lu, X., Huang, Y., & Li, Y. (2020). Mitochondrial tRNA mutation and regulation of the adiponectin pathway in maternally inherited hypertension in Chinese Han. Frontiers in Cell and Developmental Biology, 8, 623450. https://doi.org/10.3389/fcell.2020.623450
  • Balzer, M. S., Rohacs, T., & Susztak, K. (2022). How many cell types are in the kidney and what do they do? Annual Review of Physiology, 84(1), 507–531. https://doi.org/10.1146/annurev-physiol-052521-121841
  • Becht, E., Giraldo, N. A., Lacroix, L., Buttard, B., Elarouci, N., Petitprez, F., Selves, J., Laurent-Puig, P., Sautès-Fridman, C., Fridman, W. H., & de Reyniès, A. (2016). Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biology, 17(1), 218. https://doi.org/10.1186/s13059-016-1070-5
  • Bhatia, D., Capili, A., Nakahira, K., Muthukumar, T., Torres, L. K., Choi, A. M. K., & Choi, M. E. (2022). Conditional deletion of myeloid-specific mitofusin 2 but not mitofusin 1 promotes kidney fibrosis. Kidney International, 101(5), 963–986. https://doi.org/10.1016/j.kint.2022.01.030
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Cai, Y., Feng, Z., Jia, Q., Guo, J., Zhang, P., Zhao, Q., Wang, Y. X., Liu, Y. N., & Liu, W. J. (2021). Cordyceps cicadae ameliorates renal hypertensive injury and fibrosis through the regulation of SIRT1-mediated autophagy. Frontiers in Pharmacology, 12, 801094. https://doi.org/10.3389/fphar.2021.801094
  • Caillon, A., Mian, M. O. R., Fraulob-Aquino, J. C., Huo, K.-G., Barhoumi, T., Ouerd, S., Sinnaeve, P. R., Paradis, P., & Schiffrin, E. L. (2017). γδ T cells mediate angiotensin II-induced hypertension and vascular injury. Circulation, 135(22), 2155–2162. https://doi.org/10.1161/CIRCULATIONAHA.116.027058
  • Chen, K., Chen, J., Wang, L., Yang, J., Xiao, F., Wang, X., Yuan, J., Wang, L., & He, Y. (2020). Parkin ubiquitinates GATA4 and attenuates the GATA4/GAS1 signaling and detrimental effects on diabetic nephropathy. FASEB Journal, 34(7), 8858–8875. https://doi.org/10.1096/fj.202000053R
  • Chen, K., Feng, L., Hu, W., Chen, J., Wang, X., Wang, L., & He, Y. (2019). Optineurin inhibits NLRP3 inflammasome activation by enhancing mitophagy of renal tubular cells in diabetic nephropathy. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 33(3), 4571–4585. https://doi.org/10.1096/fj.201801749RRR
  • Chen, S.-J., Lv, L.-L., Liu, B.-C., & Tang, R.-N. (2020). Crosstalk between tubular epithelial cells and glomerular endothelial cells in diabetic kidney disease. Cell Proliferation, 53(3), e12763. https://doi.org/10.1111/cpr.12763
  • Davis, S., & Meltzer, P. S. (2007). GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics (Oxford, England), 23(14), 1846–1847. https://doi.org/10.1093/bioinformatics/btm254
  • Deardorff, W. J., Barnes, D. E., Jeon, S. Y., Boscardin, W. J., Langa, K. M., Covinsky, K. E., Mitchell, S. L., Whitlock, E. L., Smith, A. K., & Lee, S. J. (2022). Development and external validation of a mortality prediction model for community-dwelling older adults with dementia. JAMA Internal Medicine, 182(11), 1161–1170. https://doi.org/10.1001/jamainternmed.2022.4326
  • Deng, X., Yang, Q., Wang, Y., Zhou, C., Guo, Y., Hu, Z., Liao, W., Xu, G., & Zeng, R. (2020). CSF-1R inhibition attenuates ischemia-induced renal injury and fibrosis by reducing Ly6C+ M2-like macrophage infiltration. International Immunopharmacology, 88, 106854. https://doi.org/10.1016/j.intimp.2020.106854
  • Dhillon, P., Park, J., Hurtado del Pozo, C., Li, L., Doke, T., Huang, S., Zhao, J., Kang, H. M., Shrestra, R., Balzer, M. S., Chatterjee, S., Prado, P., Han, S. Y., Liu, H., Sheng, X., Dierickx, P., Batmanov, K., Romero, J. P., Prósper, F., … Susztak, K. (2021). The nuclear receptor ESRRA protects from kidney disease by coupling metabolism and differentiation. Cell Metabolism, 33(2), 379–394.e378. https://doi.org/10.1016/j.cmet.2020.11.011
  • Ding, Y., Li, H., Xu, L., Wang, Y., & Yang, H. (2022). Identification and validation of prognostic biomarkers specifically expressed in macrophage in iga nephropathy patients based on integrated bioinformatics analyses. Frontiers in Molecular Biosciences, 9, 884588. https://doi.org/10.3389/fmolb.2022.884588
  • Du, H., Xiao, G., Xue, Z., Li, Z., He, S., Du, X., Zhou, Z., Cao, L., Wang, Y., Yang, J., Wang, X., & Zhu, Y. (2021). QiShenYiQi ameliorates salt-induced hypertensive nephropathy by balancing ADRA1D and SIK1 expression in Dahl salt-sensitive rats. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 141, 111941. https://doi.org/10.1016/j.biopha.2021.111941
  • Du, X., Ma, X., Tan, Y., Shao, F., Li, C., Zhao, Y., Miao, Y., Han, L., Dang, G., Song, Y., Yang, D., Deng, Z., Wang, Y., Jiang, C., Kong, W., Feng, J., & Wang, X. (2023). B cell-derived anti-beta 2 glycoprotein I antibody mediates hyperhomocysteinemia-aggravated hypertensive glomerular lesions by triggering ferroptosis. Signal Transduction and Targeted Therapy, 8(1), 103. https://doi.org/10.1038/s41392-023-01313-x
  • Du, Y., Ma, Y., Zhu, Q., Fu, Y., Li, Y., Zhang, Y., Li, M., Feng, F., Yuan, P., & Wang, X. (2023). GDF15 negatively regulates chemosensitivity via TGFBR2-AKT pathway-dependent metabolism in esophageal squamous cell carcinoma. Frontiers of Medicine, 17(1), 119–131. https://doi.org/10.1007/s11684-022-0949-7
  • Edgar, R., Domrachev, M., & Lash, A. E. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30(1), 207–210. https://doi.org/10.1093/nar/30.1.207
  • Escasany, E., Lanzón, B., García-Carrasco, A., Izquierdo-Lahuerta, A., Torres, L., Corrales, P., Rodríguez Rodríguez, A. E., Luis-Lima, S., Martínez Álvarez, C., Javier Ruperez, F., Ros, M., Porrini, E., Rydén, M., & Medina-Gómez, G. (2021). Transforming growth factor β3 deficiency promotes defective lipid metabolism and fibrosis in murine kidney. Disease Models & Mechanisms, 14(9), dmm048249. https://doi.org/10.1242/dmm.048249
  • Evans, L. C., Petrova, G., Kurth, T., Yang, C., Bukowy, J. D., Mattson, D. L., & Cowley, A. W. (2017). Increased perfusion pressure drives renal T-Cell infiltration in the dahl salt-sensitive rat. Hypertension (Dallas, Tex.: 1979), 70(3), 543–551. https://doi.org/10.1161/HYPERTENSIONAHA.117.09208
  • Fukushima, K., Kitamura, S., Tsuji, K., Sang, Y., & Wada, J. (2020). Sodium glucose co-transporter 2 inhibitor ameliorates autophagic flux impairment on renal proximal tubular cells in obesity mice. International Journal of Molecular Sciences, 21(11), 4054. https://doi.org/10.3390/ijms21114054
  • Han, X. J., Lee, M. J., Yu, G. R., Lee, Z. W., Bae, J. Y., Bae, Y. C., Kang, S. H., & Kim, D. G. (2012). Altered dynamics of ubiquitin hybrid proteins during tumor cell apoptosis. Cell Death & Disease, 3(1), e255–e255. https://doi.org/10.1038/cddis.2011.142
  • Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W. M., I. I. I., Zheng, S., Butler, A., Lee, M. J., Wilk, A. J., Darby, C., Zager, M., Hoffman, P., Stoeckius, M., Papalexi, E., Mimitou, E. P., Jain, J., Srivastava, A., Stuart, T., Fleming, L. M., Yeung, … P., Satija, R. (2021). Integrated analysis of multimodal single-cell data. Cell, 184(13), 3573–3587.e3529. https://doi.org/10.1016/j.cell.2021.04.048
  • Huang, C., Chen, Y., Lai, B., Chen, Y.-X., Xu, C.-Y., & Liu, Y.-F. (2021). Overexpression of SP1 restores autophagy to alleviate acute renal injury induced by ischemia-reperfusion through the miR-205/PTEN/Akt pathway. Journal of Inflammation, 18(1), 7. https://doi.org/10.1186/s12950-021-00270-y
  • Huang, H., Wang, Y., Rudin, C., & Browne, E. P. (2022). Towards a comprehensive evaluation of dimension reduction methods for transcriptomic data visualization. Communications Biology, 5(1), 719. https://doi.org/10.1038/s42003-022-03628-x
  • Jin, S., Guerrero-Juarez, C. F., Zhang, L., Chang, I., Ramos, R., Kuan, C.-H., Myung, P., Plikus, M. V., & Nie, Q. (2021). Inference and analysis of cell-cell communication using CellChat. Nature Communications, 12(1), 1088. https://doi.org/10.1038/s41467-021-21246-9
  • Jourde-Chiche, N., Fakhouri, F., Dou, L., Bellien, J., Burtey, S., Frimat, M., Jarrot, P.-A., Kaplanski, G., Le Quintrec, M., Pernin, V., Rigothier, C., Sallée, M., Fremeaux-Bacchi, V., Guerrot, D., & Roumenina, L. T. (2019). Endothelium structure and function in kidney health and disease. Nature Reviews. Nephrology, 15(2), 87–108. https://doi.org/10.1038/s41581-018-0098-z
  • Kobayashi, M., Oshima, S., Maeyashiki, C., Nibe, Y., Otsubo, K., Matsuzawa, Y., Nemoto, Y., Nagaishi, T., Okamoto, R., Tsuchiya, K., Nakamura, T., & Watanabe, M. (2016). The ubiquitin hybrid gene UBA52 regulates ubiquitination of ribosome and sustains embryonic development. Scientific Reports, 6(1), 36780. https://doi.org/10.1038/srep36780
  • Kong, H., Jiang, C.-Y., Hu, L., Teng, P., Zhang, Y., Pan, X.-X., Sun, X.-D., & Liu, W.-T. (2019). Morphine induces dysfunction of PINK1/Parkin-mediated mitophagy in spinal cord neurons implying involvement in antinociceptive tolerance. Journal of Molecular Cell Biology, 11(12), 1056–1068. https://doi.org/10.1093/jmcb/mjz002
  • Kundu, A., Gali, S., Sharma, S., Park, J. H., Kyung, S. Y., Kacew, S., Kim, I. S., Lee, K. Y., & Kim, H. S. (2022). Tenovin-1 ameliorates renal fibrosis in high-fat-diet-induced diabetic nephropathy via antioxidant and anti-inflammatory pathways. Antioxidants (Basel, Switzerland), 11(9), 1812. https://doi.org/10.3390/antiox11091812
  • Lai, Y., Lin, P., Lin, F., Chen, M., Lin, C., Lin, X., Wu, L., Zheng, M., & Chen, J. (2022). Identification of immune microenvironment subtypes and signature genes for Alzheimer’s disease diagnosis and risk prediction based on explainable machine learning. Frontiers in Immunology, 13, 1046410. https://doi.org/10.3389/fimmu.2022.1046410
  • Langfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9(1), 559. https://doi.org/10.1186/1471-2105-9-559
  • Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., & Storey, J. D. (2012). The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics (Oxford, England), 28(6), 882–883. https://doi.org/10.1093/bioinformatics/bts034
  • Li, S., Lin, Q., Shao, X., Zhu, X., Wu, J., Wu, B., Zhang, M., Zhou, W., Zhou, Y., Jin, H., Zhang, Z., Qi, C., Shen, J., Mou, S., Gu, L., & Ni, Z. (2020). Drp1-regulated PARK2-dependent mitophagy protects against renal fibrosis in unilateral ureteral obstruction. Free Radical Biology & Medicine, 152, 632–649. https://doi.org/10.1016/j.freeradbiomed.2019.12.005
  • Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J. P., & Tamayo, P. (2015). The molecular signatures database hallmark gene set collection. Cell Systems, 1(6), 417–425. https://doi.org/10.1016/j.cels.2015.12.004
  • Liebermeister, W., Noor, E., Flamholz, A., Davidi, D., Bernhardt, J., & Milo, R. (2014). Visual account of protein investment in cellular functions. Proceedings of the National Academy of Sciences of the United States of America, 111(23), 8488–8493. https://doi.org/10.1073/pnas.1314810111
  • Liu, Z., Lee, J. N., Son, M., Lim, J.-Y., Dutta, R. K., Maharjan, Y., Kwak, S., Oh, G. T., Byun, K., Choe, S.-K., & Park, R. (2018). Ciliogenesis is reciprocally regulated by PPARA and NR1H4/FXR through controlling autophagy in vitro and in vivo. Autophagy, 14(6), 1011–1027. https://doi.org/10.1080/15548627.2018.1448326
  • Lu, X., Rudemiller, N. P., Privratsky, J. R., Ren, J., Wen, Y., Griffiths, R., & Crowley, S. D. (2020). Classical dendritic cells mediate hypertension by promoting renal oxidative stress and fluid retention. Hypertension (Dallas, Tex.: 1979), 75(1), 131–138. https://doi.org/10.1161/HYPERTENSIONAHA.119.13667
  • Ma, Z., Li, L., Livingston, M. J., Zhang, D., Mi, Q., Zhang, M., Ding, H.-F., Huo, Y., Mei, C., & Dong, Z. (2020). p53/microRNA-214/ULK1 axis impairs renal tubular autophagy in diabetic kidney disease. The Journal of Clinical Investigation, 130(9), 5011–5026. https://doi.org/10.1172/JCI135536
  • Marable, S. S., Chung, E., Adam, M., Potter, S. S., & Park, J.-S. (2018). Hnf4a deletion in the mouse kidney phenocopies Fanconi renotubular syndrome. JCI Insight, 3(14), e97497. https://doi.org/10.1172/jci.insight.97497
  • Marchesin, V., Pérez-Martí, A., Le Meur, G., Pichler, R., Grand, K., Klootwijk, E. D., Kesselheim, A., Kleta, R., Lienkamp, S., & Simons, M. (2019). Molecular basis for autosomal-dominant renal fanconi syndrome caused by HNF4A. Cell Reports, 29(13), 4407–4421.e4405. https://doi.org/10.1016/j.celrep.2019.11.066
  • Marczak, L., Idkowiak, J., Tracz, J., Stobiecki, M., Perek, B., Kostka-Jeziorny, K., Tykarski, A., Wanic-Kossowska, M., Borowski, M., Osuch, M., Formanowicz, D., & Luczak, M. (2021). Mass spectrometry-based lipidomics reveals differential changes in the accumulated lipid classes in chronic kidney disease. Metabolites, 11(5), 275. https://doi.org/10.3390/metabo11050275
  • Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., Hoang, C. D., Diehn, M., & Alizadeh, A. A. (2015). Robust enumeration of cell subsets from tissue expression profiles. Nature Methods, 12(5), 453–457. https://doi.org/10.1038/nmeth.3337
  • Peng, X., Wang, Y., Li, H., Fan, J., Shen, J., Yu, X., Zhou, Y., & Mao, H. (2019). ATG5-mediated autophagy suppresses NF-κB signaling to limit epithelial inflammatory response to kidney injury. Cell Death & Disease, 10(4), 253. https://doi.org/10.1038/s41419-019-1483-7
  • Qiu, X., Hill, A., Packer, J., Lin, D., Ma, Y.-A., & Trapnell, C. (2017). Single-cell mRNA quantification and differential analysis with Census. Nature Methods, 14(3), 309–315. https://doi.org/10.1038/nmeth.4150
  • Ramly, B., Afiqah-Aleng, N., & Mohamed-Hussein, Z.-A. (2019). Protein–protein interaction network analysis reveals several diseases highly associated with polycystic ovarian syndrome. International Journal of Molecular Sciences, 20(12), 2959. https://doi.org/10.3390/ijms20122959
  • Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), e47–e47. https://doi.org/10.1093/nar/gkv007
  • Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., & Müller, M. (2011). pROC: An open-source package for R and S + to analyze and compare ROC curves. BMC Bioinformatics, 12(1), 77. https://doi.org/10.1186/1471-2105-12-77
  • Rodriguez-Iturbe, B., Pons, H., & Johnson, R. J. (2017). Role of the immune system in hypertension. Physiological Reviews, 97(3), 1127–1164. https://doi.org/10.1152/physrev.00031.2016
  • Russo, E., Bussalino, E., Macciò, L., Verzola, D., Saio, M., Esposito, P., Leoncini, G., Pontremoli, R., & Viazzi, F. (2023). Non-haemodynamic mechanisms underlying hypertension-associated damage in target kidney components. International Journal of Molecular Sciences, 24(11), 9422. https://doi.org/10.3390/ijms24119422
  • Saran, R., Robinson, B., Abbott, K. C., Bragg-Gresham, J., Chen, X., Gipson, D., Gu, H., Hirth, R. A., Hutton, D., Jin, Y., Kapke, A., Kurtz, V., Li, Y., McCullough, K., Modi, Z., Morgenstern, H., Mukhopadhyay, P., Pearson, J., Pisoni, R., … Shahinian, V. (2020). US Renal Data System 2019 annual data report: Epidemiology of kidney disease in the United States. American Journal of Kidney Diseases, 75(1 Suppl 1), A6–A7. https://doi.org/10.1053/j.ajkd.2019.09.003
  • Shi, H.-H., Zhang, L.-Y., Chen, L.-P., Yang, J.-Y., Wang, C.-C., Xue, C.-H., Wang, Y.-M., & Zhang, T.-T. (2022). EPA-enriched phospholipids alleviate renal interstitial fibrosis in spontaneously hypertensive rats by regulating TGF-β; Signaling pathways. Marine Drugs, 20(2), 152. https://doi.org/10.3390/md20020152
  • Sipper, M., & Moore, J. H. (2021). Conservation machine learning: A case study of random forests. Scientific Reports, 11(1), 3629. https://doi.org/10.1038/s41598-021-83247-4
  • Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W. M., I. I. I., Hao, Y., Stoeckius, M., Smibert, P., & Satija, R. (2019). Comprehensive integration of single-cell data. Cell, 177(7), 1888–1902.e1821. https://doi.org/10.1016/j.cell.2019.05.031
  • Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15545–15550. https://doi.org/10.1073/pnas.0506580102
  • Sundermann, B., Bode, J., Lueken, U., Westphal, D., Gerlach, A. L., Straube, B., Wittchen, H.-U., Ströhle, A., Wittmann, A., Konrad, C., Kircher, T., Arolt, V., & Pfleiderer, B. (2017). Support vector machine analysis of functional magnetic resonance imaging of interoception does not reliably predict individual outcomes of cognitive behavioral therapy in panic disorder with agoraphobia. Frontiers in Psychiatry, 8, 99. https://doi.org/10.3389/fpsyt.2017.00099
  • Tang, R., Lin, W., Shen, C., Meng, T., Ooi, J., Eggenhuizen, P., Jin, P., Ding, X., Chen, J., Nie, W., Ao, X., Peng, W., Zhou, Q., Xiao, P., Yong, Z., & Xiao, X. (2023). Single-cell RNA sequencing reveals transcriptional signatures and cell-cell crosstalk in patients with hypertensive nephropathy. International Immunopharmacology, 125, 111104. https://doi.org/10.1016/j.intimp.2023.111104
  • Tarfiei, G. A., Shadboorestan, A., Montazeri, H., Rahmanian, N., Tavosi, G., & Ghahremani, M. H. (2019). GDF15 induced apoptosis and cytotoxicity in A549 cells depends on TGFBR2 expression. Cell Biochemistry and Function, 37(5), 320–330. https://doi.org/10.1002/cbf.3391
  • Vickers, A. J., & Elkin, E. B. (2006). Decision curve analysis: A novel method for evaluating prediction models. Medical Decision Making, 26(6), 565–574. https://doi.org/10.1177/0272989X06295361
  • Wang, R., Zhu, Y., Ren, C., Yang, S., Tian, S., Chen, H., Jin, M., & Zhou, H. (2021). Influenza A virus protein PB1-F2 impairs innate immunity by inducing mitophagy. Autophagy, 17(2), 496–511. https://doi.org/10.1080/15548627.2020.1725375
  • Wei, Q., Chen, Z., Panashe, M., Yan, Q., Gao, F., Wang, Z., & Lin, H. (2022). Glomerular expression of S100A8 in lupus nephritis: An integrated bioinformatics analysis. Frontiers in Immunology, 13, 843576. https://doi.org/10.3389/fimmu.2022.843576
  • Wilkerson, M. D., & Hayes, D. N. (2010). ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics (Oxford, England), 26(12), 1572–1573. https://doi.org/10.1093/bioinformatics/btq170
  • Wu, H., & Humphreys, B. D. (2017). The promise of single-cell RNA sequencing for kidney disease investigation. Kidney International, 92(6), 1334–1342. https://doi.org/10.1016/j.kint.2017.06.033
  • Wu, J., Wang, X., Zhu, J., Huang, X., Liu, M., Qiao, Z., Zhang, Y., Sun, Y., Wang, Z., Zhan, P., Zhang, T., Hu, H., Liu, H., Tang, W., & Yi, F. (2023). GPR97 deficiency ameliorates renal interstitial fibrosis in mouse hypertensive nephropathy. Acta Pharmacologica Sinica, 44(6), 1206–1216. https://doi.org/10.1038/s41401-022-01041-y
  • Xiao, L., Xu, X., Zhang, F., Wang, M., Xu, Y., Tang, D., Wang, J., Qin, Y., Liu, Y., Tang, C., He, L., Greka, A., Zhou, Z., Liu, F., Dong, Z., & Sun, L. (2017). The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biology, 11, 297–311. https://doi.org/10.1016/j.redox.2016.12.022
  • Xu, J., Shen, C., Lin, W., Meng, T., Ooi, J. D., Eggenhuizen, P. J., Tang, R., Xiao, G., Jin, P., Ding, X., Tang, Y., Peng, W., Nie, W., Ao, X., Xiao, X., Zhong, Y., & Zhou, Q. (2021). Single-cell profiling reveals transcriptional signatures and cell-cell crosstalk in anti-PLA2R positive idiopathic membranous nephropathy patients. Frontiers in Immunology, 12, 683330. https://doi.org/10.3389/fimmu.2021.683330
  • Xu, J., Zhang, C., Shi, X., Li, J., Liu, M., Jiang, W., & Fang, Z. (2019). Efficacy and safety of sodium tanshinone IIA sulfonate injection on hypertensive nephropathy: A systematic review and meta-analysis. Frontiers in Pharmacology, 10, 1542. https://doi.org/10.3389/fphar.2019.01542
  • Xu, X., Dong, Y., Liu, M., Li, Y., & Zhang, Y. (2021). Clinical significance of UbA52 level in the urine of patients with type 2 diabetes mellitus and diabetic kidney disease. Nefrologia, 41(5), 548–555. https://doi.org/10.1016/j.nefroe.2021.11.009
  • Xu, Z., Zou, C., Yu, W., Xu, S., Huang, L., Khan, Z., Wang, J., Liang, G., & Wang, Y. (2019). Inhibition of STAT3 activation mediated by toll-like receptor 4 attenuates angiotensin II-induced renal fibrosis and dysfunction. British Journal of Pharmacology, 176(14), 2627–2641. https://doi.org/10.1111/bph.14686
  • Yanagi, T., Kikuchi, H., Susa, K., Takahashi, N., Bamba, H., Suzuki, T., Nakano, Y., Fujiki, T., Mori, Y., Ando, F., Mandai, S., Mori, T., Takeuchi, K., Honda, S., Torii, S., Shimizu, S., Rai, T., Uchida, S., & Sohara, E. (2023). Absence of ULK1 decreases AMPK activity in the kidney, leading to chronic kidney disease progression. Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 28(1), 5–14. https://doi.org/10.1111/gtc.12989
  • Yang, X., Wang, H., Ni, H.-M., Xiong, A., Wang, Z., Sesaki, H., Ding, W.-X., & Yang, L. (2017). Inhibition of Drp1 protects against senecionine-induced mitochondria-mediated apoptosis in primary hepatocytes and in mice. Redox Biology, 12, 264–273. https://doi.org/10.1016/j.redox.2017.02.020
  • Yang, X., Zhou, B., Zhou, L., Cui, L., Zeng, J., Wang, S., Shi, W., Zhang, Y., Luo, X., Xu, C., Xue, Y., Chen, H., Chen, S., Wang, G., Guo, L., Jose, P. A., Wilcox, C. S., Wu, S., Wu, G., & Zeng, C. (2022). Development and validation of prediction models for hypertensive nephropathy, the PANDORA Study. Frontiers in Cardiovascular Medicine, 9, 794768. https://doi.org/10.3389/fcvm.2022.794768
  • Yao, L., Liang, X., Qiao, Y., Chen, B., Wang, P., & Liu, Z. (2022). Mitochondrial dysfunction in diabetic tubulopathy. Metabolism: Clinical and Experimental, 131, 155195. https://doi.org/10.1016/j.metabol.2022.155195
  • Yu, G., Wang, L.-G., Han, Y., & He, Q.-Y. (2012). clusterProfiler: An R package for comparing biological themes among gene clusters. Omics: A Journal of Integrative Biology, 16(5), 284–287. https://doi.org/10.1089/omi.2011.0118
  • Yuan, Y., Fu, M., Li, N., & Ye, M. (2022). Identification of immune infiltration and cuproptosis-related subgroups in Crohn’s disease. Frontiers in Immunology, 13, 1074271. https://doi.org/10.3389/fimmu.2022.1074271
  • Zhang, M.-Z., Wang, X., Wang, Y., Niu, A., Wang, S., Zou, C., & Harris, R. C. (2017). IL-4/IL-13–mediated polarization of renal macrophages/dendritic cells to an M2a phenotype is essential for recovery from acute kidney injury. Kidney International, 91(2), 375–386. https://doi.org/10.1016/j.kint.2016.08.020
  • Zhang, S., Hu, L., Jiang, J., Li, H., Wu, Q., Ooi, K., Wang, J., Feng, Y., Zhu, D., & Xia, C. (2020). HMGB1/RAGE axis mediates stress-induced RVLM neuroinflammation in mice via impairing mitophagy flux in microglia. Journal of Neuroinflammation, 17(1), 15. https://doi.org/10.1186/s12974-019-1673-3
  • Zhang, Y., Zhang, N., Zou, Y., Song, C., Cao, K., Wu, B., You, S., Lu, S., Wang, D., Xu, J., Huang, X., Zhang, P., Fan, Z., Liu, J., Cheng, Z., Zhang, Z., Kong, C., Cao, L., & Sun, Y. (2023). Deacetylation of Septin4 by SIRT2 (Silent Mating Type Information Regulation 2 Homolog-2) mitigates damaging of hypertensive nephropathy. Circulation Research, 132(5), 601–624. https://doi.org/10.1161/CIRCRESAHA.122.321591
  • Zhao, E., Xie, H., & Zhang, Y. (2020). Predicting diagnostic gene biomarkers associated with immune infiltration in patients with acute myocardial infarction. Frontiers in Cardiovascular Medicine, 7, 586871. https://doi.org/10.3389/fcvm.2020.586871
  • Zhu, C., Liang, Q., Liu, Y., Kong, D., Zhang, J., Wang, H., Wang, K., & Guo, Z. (2019). Kidney injury in response to crystallization of calcium oxalate leads to rearrangement of the intrarenal T cell receptor delta immune repertoire. Journal of Translational Medicine, 17(1), 278. https://doi.org/10.1186/s12967-019-2022-0
  • Zou, R., Tao, J., Qiu, J., Lu, H., Wu, J., Zhu, H., Li, R., Mui, D., Toan, S., Chang, X., Zhou, H., & Fan, X. (2022). DNA-PKcs promotes sepsis-induced multiple organ failure by triggering mitochondrial dysfunction. Journal of Advanced Research, 41, 39–48. https://doi.org/10.1016/j.jare.2022.01.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.