173
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structure-based evaluation of the envelope domain III–nonstructural protein 1 (EDIII-NS1) fusion as a dengue virus vaccine candidate

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 03 Oct 2023, Accepted 23 Jan 2024, Published online: 06 Feb 2024

References

  • Aguiar, M., Stollenwerk, N., & Halstead, S. B. (2016). The risks behind Dengvaxia recommendation. The Lancet. Infectious Diseases, 16(8), 882–883. https://doi.org/10.1016/S1473-3099(16)30168-2
  • Aiman, S., Alhamhoom, Y., Ali, F., Rahman, N., Rastrelli, L., Khan, A., Farooq, Q. U. A., Ahmed, A., Khan, A., & Li, C. (2022). Multi-epitope chimeric vaccine design against emerging Monkeypox virus via reverse vaccinology techniques – A bioinformatics and immunoinformatics approach. Frontiers in Immunology, 13, 985450. https://doi.org/10.3389/fimmu.2022.985450
  • Akey, D. L., Brown, W. C., Dutta, S., Konwerski, J., Jose, J., Jurkiw, T. J., DelProposto, J., Ogata, C. M., Skiniotis, G., Kuhn, R. J., & Smith, J. L. (2014). Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science (New York, N.Y.), 343(6173), 881–885. https://doi.org/10.1126/science.1247749
  • Alcalá, A. C., Palomares, L. A., & Ludert, J. E. (2018). Secretion of nonstructural protein 1 of dengue virus from infected mosquito cells: Facts and speculations. Journal of Virology, 92(14), e00275-18. https://doi.org/10.1128/JVI.00275-18
  • Arai, R., Ueda, H., Kitayama, A., Kamiya, N., & Nagamune, T. (2001). Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Engineering, 14(8), 529–532. https://doi.org/10.1093/protein/14.8.529
  • Arumugam, S., & Varamballi, P. (2021). In-silico design of envelope based multi-epitope vaccine candidate against Kyasanur forest disease virus. Scientific Reports, 11(1), 17118. https://doi.org/10.21203/rs.3.rs-155690/v1
  • Ayyagari, V. S., Venkateswarulu, T. C., Abraham Peele, K., & Srirama, K. (2022). Design of a multi-epitope-based vaccine targeting M-protein of SARS-CoV2: An immunoinformatics approach. Journal of Biomolecular Structure & Dynamics, 40(7), 2963–2977. https://doi.org/10.1080/07391102.2020.1850357
  • Basheer, A., Jamal, S. B., Alzahrani, B., & Faheem, M. (2023). Development of a tetravalent subunit vaccine against dengue virus through a vaccinomics approach. Frontiers in Immunology, 14, 1273838. https://doi.org/10.3389/fimmu.2023.1273838
  • Basu, A. (2022). In silico epitope-based vaccine prediction against fungal infection aspergillosis. Challenges, 13(2), 29. https://doi.org/10.3390/challe13020029
  • Beatty, P. R., Puerta-Guardo, H., Killingbeck, S. S., Glasner, D. R., Hopkins, K., & Harris, E. (2015). Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Science Translational Medicine, 7(304), 304ra141. https://doi.org/10.1126/scitranslmed.aaa3787
  • Bozza, F. A., Cruz, O. G., Zagne, S. M. O., Azeredo, E. L., Nogueira, R. M. R., Assis, E. F., Bozza, P. T., & Kubelka, C. F. (2008). Multiplex cytokine profile from dengue patients: MIP-1beta and IFN-gamma as predictive factors for severity. BMC Infectious Diseases, 8(1), 86. https://doi.org/10.1186/1471-2334-8-146
  • Carpio, K. L., & Barrett, A. D. T. (2021). Flavivirus NS1 and its potential in vaccine development. Vaccines, 9(6), 622. https://doi.org/10.3390/vaccines9060622
  • Chen, Y., Pan, Y., Guo, Y., Qiu, L., Ding, X., & Che, X. (2010). Comprehensive mapping of immunodominant and conserved serotype- and group-specific B-cell epitopes of nonstructural protein 1 from dengue virus type 1. Virology, 398(2), 290–298. https://doi.org/10.1016/j.virol.2009.12.010
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Costa, V. V., Fagundes, C. T., Souza, D. G., & Teixeira, M. M. (2013). Inflammatory and innate immune responses in dengue infection: protection versus disease induction. The American Journal of Pathology, 182(6), 1950–1961. https://doi.org/10.1016/j.ajpath.2013.02.027
  • DeLano, W. L. (2002). The PyMOL molecular graphics system. http://www. pymol. org.
  • Dey, J., Mahapatra, S. R., Lata, S., Patro, S., Misra, N., & Suar, M. (2022). Exploring Klebsiella pneumoniae capsule polysaccharide proteins to design multiepitope subunit vaccine to fight against pneumonia. Expert Review of Vaccines, 21(4), 569–587. https://doi.org/10.1080/14760584.2022.2021882
  • Dey, J., Mahapatra, S. R., Raj, T. K., Kaur, T., Jain, P., Tiwari, A., Patro, S., Misra, N., & Suar, M. (2022). Designing a novel multi-epitope vaccine to evoke a robust immune response against pathogenic multidrug-resistant Enterococcus faecium bacterium. Gut Pathogens, 14(1), 21. https://doi.org/10.1186/s13099-022-00495-z
  • Dey, J., Mahapatra, S. R., Singh, P. K., Prabhuswamimath, S. C., Misra, N., & Suar, M. (2023). Designing of multi-epitope peptide vaccine against Acinetobacter baumannii through combined immunoinformatics and protein interaction–based approaches. Immunologic Research, 71(4), 639–662. https://doi.org/10.1007/s12026-023-09374-4
  • Durbin, A. P., Kirkpatrick, B. D., Pierce, K. K., Carmolli, M. P., Tibery, C. M., Grier, P. L., Hynes, N., Opert, K., Jarvis, A. P., Sabundayo, B. P., McElvany, B. D., Sendra, E. A., Larsson, C. J., Jo, M., Lovchik, J. M., Luke, C. J., Walsh, M. C., Fraser, E. A., Subbarao, K., & Whitehead, S. S. (2016). A 12-month interval dosing study in adults indicates that a single dose of the NIAID tetravalent dengue vaccine induces a robust neutralizing antibody response. The Journal of Infectious Diseases, 214(6), 832–835. https://doi.org/10.1093/infdis/jiw067
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404. https://doi.org/10.1016/S0076-6879(97)77022-8
  • Fahimi, H., Allahyari, H., Hassan, Z. M., & Sadeghizadeh, M. (2014). Dengue virus type-3 envelope protein domain iii; expression and immunogenicity. Iranian Journal of Basic Medical Sciences, 17(11), 836–843.
  • Fahimi, H., Sadeghizadeh, M., Hassan, Z. M., Auerswald, H., & Schreiber, M. (2018). Immunogenicity of a novel tetravalent dengue envelope protein domain III-based antigen in mice. EXCLI Journal, 17, 1054–1068. https://doi.org/10.17179/excli2018-1664
  • Falconar, A. K. I., Young, P. R., & Miles, M. A. (1994). Precise location of sequential dengue virus subcomplex and complex B cell epitopes on the nonstructural-1 glycoprotein. Archives of Virology, 137(3-4), 315–326. https://doi.org/10.1007/bf01309478
  • Fernandes-Santos, C., & Azeredo, E. L. D (2022). Innate immune response to dengue virus: Toll-like receptors and antiviral response. Viruses, 14(5), 992. https://doi.org/10.3390/v14050992
  • Fieser, T. M., Tainer, J. A., Geysen, H. M., Houghten, R. A., & Lerner, R. A. (1987). Influence of protein flexibility and peptide conformation on reactivity of monoclonal anti-peptide antibodies with a protein alpha-helix. Proceedings of the National Academy of Sciences of the United States of America, 84(23), 8568–8572. https://doi.org/10.1073/pnas.84.23.8568
  • Fonseca, N. A., Camacho, R., & Magalhães, A. L. (2008). Amino acid pairing at the N‐and C‐termini of helical segments in proteins. Proteins, 70(1), 188–196. https://doi.org/10.1002/prot.21525
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S. e., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In J. M. Walker (Ed.), The proteomics protocols handbook (pp. 571–607). Humana Press. https://doi.org/10.1385/1-59259-890-0:571
  • Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server issue), W526–W531. https://doi.org/10.1093/nar/gki376
  • Guruprasad, K., Reddy, B. B., & Pandit, M. W. (1990). Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, 4(2), 155–161. https://doi.org/10.1093/protein/4.2.155
  • Hou, J., Ye, W., & Chen, J. (2022). Current development and challenges of tetravalent Live-attenuated dengue vaccines. Frontiers in Immunology, 13, 840104. https://doi.org/10.3389/fimmu.2022.840104
  • Kar, T., Narsaria, U., Basak, S., Deb, D., Castiglione, F., Mueller, D. M., & Srivastava, A. P. (2020). A candidate multi-epitope vaccine against SARS-CoV-2. Scientific Reports, 10(1), 10895. https://doi.org/10.1038/s41598-020-67749-1
  • Klausen, M. S., Jespersen, M. C., Nielsen, H., Jensen, K. K., Jurtz, V. I., Sønderby, C. K., Sommer, M. O. A., Winther, O., Nielsen, M., Petersen, B., & Marcatili, P. (2019). NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning. Proteins, 87(6), 520–527. https://doi.org/10.1002/prot.25674
  • Kularatne, S. A., & Dalugama, C. (2022). Dengue infection: Global importance, immunopathology and management. Clinical Medicine, 22(1), 9–13. https://doi.org/10.7861/clinmed.2021-0791
  • Kulkarni, R. (2020). Antibody-dependent enhancement of viral infections. In Dynamics of immune activation in viral diseases (pp. 9–41). Springer. https://doi.org/10.1007/978-981-15-1045-8_2
  • Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105–132. https://doi.org/10.1016/0022-2836(82)90515-0
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Livingston, B., Crimi, C., Newman, M., Higashimoto, Y., Appella, E., Sidney, J., & Sette, A. (2002). A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. Journal of Immunology (Baltimore, Md.: 1950), 168(11), 5499–5506. https://doi.org/10.4049/jimmunol.168.11.5499
  • Lovell, S. C., Davis, I. W., Arendall, W. B., de Bakker, P. I. W., Word, J. M., Prisant, M. G., Richardson, J. S., & Richardson, D. C. (2003). Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins, 50(3), 437–450. https://doi.org/10.1002/prot.10286
  • Mafakher, L., Rismani, E., Rahimi, H., Enayatkhani, M., Azadmanesh, K., & Teimoori-Toolabi, L. (2022). Computational design of antagonist peptides based on the structure of secreted frizzled-related protein-1 (SFRP1) aiming to inhibit Wnt signaling pathway. Journal of Biomolecular Structure & Dynamics, 40(5), 2169–2188. https://doi.org/10.1080/07391102.2020.1835718
  • Mahapatra, S. R., Dey, J., Jaiswal, A., Roy, R., Misra, N., & Suar, M. (2022). Immunoinformatics-guided designing of epitope-based subunit vaccine from Pilus assembly protein of Acinetobacter baumannii bacteria. Journal of Immunological Methods, 508, 113325. https://doi.org/10.1016/j.jim.2022.113325
  • Mahapatra, S. R., Dey, J., Raj, T. K., Kumar, V., Ghosh, M., Verma, K. K., Kaur, T., Kesawat, M. S., Misra, N., & Suar, M. (2022). The potential of plant-derived secondary metabolites as novel drug candidates against Klebsiella pneumoniae: Molecular docking and simulation investigation. South African Journal of Botany, 149, 789–797. https://doi.org/10.1016/j.sajb.2022.04.043
  • Mahapatra, S. R., Dey, J., Raj, T. K., Misra, N., & Suar, M. (2023). Designing a next-generation multiepitope-based vaccine against Staphylococcus aureus using reverse vaccinology approaches. Pathogens (Basel, Switzerland), 12(3), 376. https://doi.org/10.3390/pathogens12030376
  • Mason, P. W., Zügel, M. U., Semproni, A. R., Fournier, M. J., & Mason, T. L. (1990). The antigenic structure of dengue type 1 virus envelope and NS1 proteins expressed in Escherichia coli. The Journal of General Virology, 71 (Pt 9)(9), 2107–2114. https://doi.org/10.1099/0022-1317-71-9-2107
  • Morozov, V., Rodrigues, C. H. M., & Ascher, D. B. (2023). CSM-toxin: A web-server for predicting protein toxicity. Pharmaceutics, 15(2), 431. https://doi.org/10.3390/pharmaceutics15020431
  • Nagar, P. K., Savargaonkar, D., & Anvikar, A. R. (2020). Detection of dengue virus-specific IgM and IgG antibodies through peptide sequences of envelope and NS1 proteins for serological identification. Journal of Immunology Research, 2020, 1820325–1820328. https://doi.org/10.1155/2020/1820325
  • Narang, P. K., Dey, J., Mahapatra, S. R., Ghosh, M., Misra, N., Suar, M., Kumar, V., & Raina, V. (2021). Functional annotation and sequence-structure characterization of a hypothetical protein putatively involved in carotenoid biosynthesis in microalgae. South African Journal of Botany, 141, 219–226. https://doi.org/10.1016/j.sajb.2021.04.014
  • Narang, P. K., Dey, J., Mahapatra, S. R., Roy, R., Kushwaha, G. S., Misra, N., Suar, M., & Raina, V. (2022). Genome-based identification and comparative analysis of enzymes for carotenoid biosynthesis in microalgae. World Journal of Microbiology and Biotechnology, 38(1), 8–22. https://doi.org/10.1007/s11274-021-03188-y
  • Palanichamy Kala, M., St. John, A. L., & Rathore, A. P. (2023). Dengue: Update on clinically relevant therapeutic strategies and vaccines. Current Treatment Options in Infectious Diseases, 15(2), 27–52. https://doi.org/10.1007/s40506-023-00263-w
  • Panya, A., Songprakhon, P., Panwong, S., Jantakee, K., Kaewkod, T., Tragoolpua, Y., Sawasdee, N., Lee, V. S., Nimmanpipug, P., & Yenchitsomanus, P.-T. (2021). Cordycepin inhibits virus replication in dengue virus-infected vero cells. Molecules (Basel, Switzerland), 26(11), 3118. https://doi.org/10.3390/molecules26113118
  • Paul, S., Sidney, J., Sette, A., & Peters, B. (2016). TepiTool: A pipeline for computational prediction of T cell epitope candidates. Current Protocols in Immunology, 114(1), 18.19.1–18.19.24. https://doi.org/10.1002/cpim.12
  • Pfarr, K. M., Krome, A. K., Al-Obaidi, I., Batchelor, H., Vaillant, M., Hoerauf, A., Opoku, N. O., & Kuesel, A. C. (2023). The pipeline for drugs for control and elimination of neglected tropical diseases: 1. Anti-infective drugs for regulatory registration. Parasites & Vectors, 16(1), 82. https://doi.org/10.1186/s13071-022-05581-4
  • Pintado Silva, J., & Fernandez-Sesma, A. (2023). Challenges on the development of a dengue vaccine: A comprehensive review of the state of the art. The Journal of General Virology, 104(3), 001831. https://doi.org/10.1099/jgv.0.001831
  • Ponomarenko, J., Bui, H.-H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9(1), 514. https://doi.org/10.1186/1471-2105-9-514
  • Rabie, A. M. (2022a). Exploration of the potent toxic intracellular effects of the natural adenosine analog cordycepin against SARS-CoV-2 replication. Journal of Modern Biology and Drug Discovery, 1, 1.
  • Rabie, A. M. (2022b). Potent inhibitory activities of the adenosine analogue cordycepin on SARS-CoV-2 replication. ACS Omega, 7(3), 2960–2969. https://doi.org/10.1021/acsomega.1c05998
  • Rabie, A. M. (2023). Future of the current anticoronaviral agents: A viewpoint on the validation for the next COVIDs and pandemics. BIOCELL, 47(10), 2133–2139. https://doi.org/10.32604/biocell.2023.030057
  • Ragone, C., Manolio, C., Cavalluzzo, B., Mauriello, A., Tornesello, M. L., Buonaguro, F. M., Castiglione, F., Vitagliano, L., Iaccarino, E., Ruvo, M., Tagliamonte, M., & Buonaguro, L. (2021). Identification and validation of viral antigens sharing sequence and structural homology with tumor-associated antigens (TAAs). Journal for ImmunoTherapy of Cancer, 9(5), e002694. https://doi.org/10.1136/jitc-2021-002694
  • Ramasamy, V., Arora, U., Shukla, R., Poddar, A., Shanmugam, R. K., White, L. J., Mattocks, M. M., Raut, R., Perween, A., Tyagi, P., de Silva, A. M., Bhaumik, S. K., Kaja, M. K., Villinger, F., Ahmed, R., Johnston, R. E., Swaminathan, S., & Khanna, N. (2018). A tetravalent virus-like particle vaccine designed to display domain III of dengue envelope proteins induces multi-serotype neutralizing antibodies in mice and macaques which confer protection against antibody dependent enhancement in AG129 mice. PLoS Neglected Tropical Diseases, 12(1), e0006191. https://doi.org/10.1371/journal.pntd.0006191
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PloS One, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Rathore, A. P., & St. John, A. L. (2020). Cross-reactive immunity among flaviviruses. Frontiers in Immunology, 11, 334. https://doi.org/10.3389/fimmu.2020.00334
  • Reynisson, B., Alvarez, B., Paul, S., Peters, B., & Nielsen, M. (2020). NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Research, 48(W1), W449–W454. https://doi.org/10.1093/nar/gkaa379
  • Rivera, L., Biswal, S., Sáez-Llorens, X., Reynales, H., López-Medina, E., Borja-Tabora, C., Bravo, L., Sirivichayakul, C., Kosalaraksa, P., Martinez Vargas, L., Yu, D., Watanaveeradej, V., Espinoza, F., Dietze, R., Fernando, L., Wickramasinghe, P., Duarte MoreiraJr, E., Fernando, A. D., Gunasekera, D., … Borkowski, A. (2022). Three-year efficacy and safety of Takeda’s dengue vaccine candidate (TAK-003). Clinical Infectious Diseases, 75(1), 107–117. https://doi.org/10.1093/cid/ciab864
  • Rouvinski, A., Guardado-Calvo, P., Barba-Spaeth, G., Duquerroy, S., Vaney, M.-C., Kikuti, C. M., Navarro Sanchez, M. E., Dejnirattisai, W., Wongwiwat, W., Haouz, A., Girard-Blanc, C., Petres, S., Shepard, W. E., Desprès, P., Arenzana-Seisdedos, F., Dussart, P., Mongkolsapaya, J., Screaton, G. R., & Rey, F. A. (2015). Recognition determinants of broadly neutralizing human antibodies against dengue viruses. Nature, 520(7545), 109–113. https://doi.org/10.1038/nature14130
  • Russell, K. L., Rupp, R. E., Morales-Ramirez, J. O., Diaz-Perez, C., Andrews, C. P., Lee, A. W., Finn, T. S., Cox, K. S., Falk Russell, A., Schaller, M. M., Martin, J. C., Hyatt, D. M., Gozlan-Kelner, S., Bili, A., & Coller, B.-A G. (2022). A phase I randomized, double-blind, placebo-controlled study to evaluate the safety, tolerability, and immunogenicity of a live-attenuated quadrivalent dengue vaccine in flavivirus-naïve and flavivirus-experienced healthy adults. Human Vaccines & Immunotherapeutics, 18(5), 2046960. https://doi.org/10.1080/21645515.2022.2046960
  • Saivish, M. V., Menezes, G. D L., Costa, V. G. D., Silva, G. C. D. D., Marques, R. E., Nogueira, M. L., & Silva, R. A. D. (2022). Predicting antigenic peptides from rocio virus NS1 protein for immunodiagnostic testing using immunoinformatics and molecular dynamics simulation. International Journal of Molecular Sciences, 23(14), 7681. https://doi.org/10.3390/ijms23147681
  • Salje, H., Alera, M. T., Chua, M. N., Hunsawong, T., Ellison, D., Srikiatkhachorn, A., Jarman, R. G., Gromowski, G. D., Rodriguez-Barraquer, I., Cauchemez, S., Cummings, D. A. T., Macareo, L., Yoon, I.-K., Fernandez, S., & Rothman, A. L. (2021). Evaluation of the extended efficacy of the Dengvaxia vaccine against symptomatic and subclinical dengue infection. Nature Medicine, 27(8), 1395–1400. https://www.nature.com/articles/s41591-021-01392-9 https://doi.org/10.1038/s41591-021-01392-9
  • Sarker, A., Dhama, N., & Gupta, R. D. (2023). Dengue virus neutralizing antibody: A review of targets, cross-reactivity, and antibody-dependent enhancement. Frontiers in Immunology, 14, 1200195. https://doi.org/10.3389/fimmu.2023.1200195
  • Schoenborn, J. R., & Wilson, C. B. (2007). Regulation of interferon‐γ during innate and adaptive immune responses. Advances in Immunology, 96, 41–101. https://doi.org/10.1016/S0065-2776(07)96002-2
  • Screaton, G., Mongkolsapaya, J., Yacoub, S., & Roberts, C. (2015). New insights into the immunopathology and control of dengue virus infection. Nature Reviews. Immunology, 15(12), 745–759. https://doi.org/10.1038/nri3916
  • Shoushtari, M., Mafakher, L., Rahmati, S., Salehi-Vaziri, M., Arashkia, A., Roohvand, F., Teimoori-Toolabi, L., & Azadmanesh, K. (2022a). Designing vaccine candidates against dengue virus by in silico studies on structural and nonstructural domains. Molecular and Cellular Probes, 63, 101818. https://doi.org/10.1016/j.mcp.2022.101818
  • Shoushtari, M., Roohvand, F., Salehi-Vaziri, M., Arashkia, A., Bakhshi, H., & Azadmanesh, K. (2022b). Adenovirus vector-based vaccines as forefront approaches in fighting the battle against flaviviruses. Human Vaccines & Immunotherapeutics, 18(5), 2079323. https://doi.org/10.1080/21645515.2022.2079323
  • Smith, S. A., de Alwis, A. R., Kose, N., Harris, E., Ibarra, K. D., Kahle, K. M., Pfaff, J. M., Xiang, X., Doranz, B. J., de Silva, A. M., Austin, S. K., Sukupolvi-Petty, S., Diamond, M. S., & Crowe, J. E. Jr., (2013). The potent and broadly neutralizing human dengue virus-specific monoclonal antibody 1C19 reveals a unique cross-reactive epitope on the bc loop of domain II of the envelope protein. mBio, 4(6), e00873–13. https://doi.org/10.1128/mBio.00873-13
  • Sudeshna Panda, S., Dey, J., Mahapatra, S. R., Kushwaha, G. S., Misra, N., Suar, M., & Ghosh, M. (2022). Investigation on structural prediction of pectate lyase enzymes from different microbes and comparative docking studies with pectin: The economical waste from food industry. Geomicrobiology Journal, 39(3-5), 294–305. https://doi.org/10.1080/01490451.2021.1992042
  • Thimmulappa, R. K., Mudnakudu-Nagaraju, K. K., Shivamallu, C., Subramaniam, K. T., Radhakrishnan, A., Bhojraj, S., & Kuppusamy, G. (2021). Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19. Heliyon, 7(2), e06350. https://doi.org/10.1016/j.heliyon.2021.e06350
  • Tillu, H., Tripathy, A. S., Reshmi, P. V., & Cecilia, D. (2016). Altered profile of regulatory T cells and associated cytokines in mild and moderate dengue. European Journal of Clinical Microbiology & Infectious Diseases, 35(3), 453–461. https://doi.org/10.1007/s10096-015-2561-0
  • Tsai, W.-Y., Lai, C.-Y., Wu, Y.-C., Lin, H.-E., Edwards, C., Jumnainsong, A., Kliks, S., Halstead, S., Mongkolsapaya, J., Screaton, G. R., & Wang, W.-K. (2013). High-avidity and potently neutralizing cross-reactive human monoclonal antibodies derived from secondary dengue virus infection. Journal of Virology, 87(23), 12562–12575. https://doi.org/10.1128/jvi.00871-13
  • Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics, 54(1), 5.6.1–5.6.37. https://doi.org/10.1002/cpbi.3
  • Whitehead, S. S., Durbin, A. P., Pierce, K. K., Elwood, D., McElvany, B. D., Fraser, E. A., Carmolli, M. P., Tibery, C. M., Hynes, N. A., Jo, M., Lovchik, J. M., Larsson, C. J., Doty, E. A., Dickson, D. M., Luke, C. J., Subbarao, K., Diehl, S. A., & Kirkpatrick, B. D. (2017). In a randomized trial, the live attenuated tetravalent dengue vaccine TV003 is well-tolerated and highly immunogenic in subjects with flavivirus exposure prior to vaccination. PLoS Neglected Tropical Diseases, 11(5), e0005584. https://doi.org/10.1371/journal.pntd.0005584
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (2018). MolProbility: More and better reference data for improved all-atom structure validation. Protein Science: A Publication of the Protein Society, 27(1), 293–315. https://doi.org/10.1002/pro.3330
  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein–protein complexes. Bioinformatics (Oxford, England), 32(23), 3676–3678. https://doi.org/10.1093/bioinformatics/btw514
  • Yen, L.-C., Chen, H.-W., Ho, C.-L., Lin, C.-C., Lin, Y.-L., Yang, Q.-W., Chiu, K.-C., Lien, S.-P., Lin, R.-J., & Liao, C.-L. (2023). Neutralizing antibodies targeting a novel epitope on envelope protein exhibited broad protection against flavivirus without risk of disease enhancement. Journal of Biomedical Science, 30(1), 41. https://doi.org/10.1186/s12929-023-00938-y
  • Yuan, S., Chan, H. S., Filipek, S., & Vogel, H. (2016). PyMOL and Inkscape bridge the data and the data visualization. Structure (London, England: 1993), 24(12), 2041–2042. https://doi.org/10.1016/j.str.2016.11.012
  • Zhang, X., Jia, R., Shen, H., Wang, M., Yin, Z., & Cheng, A. (2017). Structures and functions of the envelope glycoprotein in flavivirus infections. Viruses, 9(11), 338. https://doi.org/10.3390/v9110338
  • Zheng, W., Wu, H., Wang, T., Zhan, S., & Liu, X. (2021). Quercetin for COVID-19 and DENGUE co-infection: A potential therapeutic strategy of targeting critical host signal pathways triggered by SARS-CoV-2 and DENV. Briefings in Bioinformatics, 22(6), bbab199. https://doi.org/10.1093/bib/bbab199

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.