59
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Molecular interaction studies of P3CL on bovine serum albumin through biophysical approach

, , , , , & show all
Received 14 Aug 2023, Accepted 25 Jan 2024, Published online: 07 Feb 2024

References

  • Ali, I., Nadeem Lone, M., An Al-Othman, Z., Al-Warthan, A., & Marsin Sanagi, M. (2015). Heterocyclic scaffolds: Centrality in anticancer drug development. Current Drug Targets, 16(7), 711–734. https://doi.org/10.2174/1389450116666150309115922
  • Alsaif, N. A.,Wani, T. A.,Bakheit, A. H., &Zargar, S. (2020). Multi-spectroscopic investigation, molecular docking and molecular dynamic simulation of competitive interactions between flavonoids (quercetin and rutin) and sorafenib for binding to human serum albumin. International Journal of Biological Macromolecules, 165(Pt B), 2451–2461. https://doi.org/10.1016/j.ijbiomac.2020.10.098 33122058
  • Banerjee, A., Mohanty, M., Lima, S., Samanta, R., Garribba, E., Sasamori, T., & Dinda, R. (2020). Synthesis, structure and characterization of new dithiocarbazate-based mixed ligand oxidovanadium(IV) complexes: DNA/HSA interaction, cytotoxic activity and DFT studies. New Journal of Chemistry, 44(26), 10946–10963. https://doi.org/10.1039/D0NJ01246G
  • Barakat, C., & Patra, D. (2013). Combining time‐resolved fluorescence with synchronous fluorescence spectroscopy to study bovine serum albumin‐curcumin complex during unfolding and refolding processes. Luminescence: The Journal of Biological and Chemical Luminescence, 28(2), 149–155. https://doi.org/10.1002/bio.2354
  • Callis, P. R. (2014). Binding phenomena and fluorescence quenching. II: Photophysics of aromatic residues and dependence of fluorescence spectra on protein conformation. Journal of Molecular Structure, 1077, 22–29. https://doi.org/10.1016/j.molstruc.2014.04.051
  • Das, P., Chaudhari, S. K., Das, A., Kundu, S., & Saha, C. (2019). Interaction of flavonols with human serum albumin: A biophysical study showing structure–activity relationship and enhancement when coated on silver nanoparticles. Journal of Biomolecular Structure & Dynamics, 37(6), 1414–1426. https://doi.org/10.1080/07391102.2018.1462732
  • Dehkordi, M. F., Farhadian, S., Abdolvand, M., Soureshjani, E. H., Rahmani, B., & Darzi, S. (2021). Deciphering the DNA-binding affinity, cytotoxicity and apoptosis induce as the anticancer mechanism of Bavachinin: An experimental and computational investigation. Journal of Molecular Liquids, 341, 117373. https://doi.org/10.1016/j.molliq.2021.117373
  • Eslami-Farsani, R., Shareghi, B., Farhadian, S., & Momeni, L. (2021). Experimental and theoretical investigations on the interaction of glucose molecules with myoglobin in the aqueous solution using theoretical and experimental methods. Journal of Biomolecular Structure & Dynamics, 39(17), 6384–6395. https://doi.org/10.1080/07391102.2020.1798283
  • Farajzadeh-Dehkordi, N., Farhadian, S., Zahraei, Z., Gholamian-Dehkordi, N., & Shareghi, B. (2021). Interaction of reactive Red195 with human serum albumin: Determination of the binding mechanism and binding site by spectroscopic and molecular modeling methods. Journal of Molecular Liquids, 327, 114835. https://doi.org/10.1016/j.molliq.2020.114835
  • Raeessi-Babaheydari,E., Farhadian, S., &Shareghi, B. ( 2021). Evaluation of interaction betweencitrus flavonoid, naringenin, and pepsin using spectroscopic analysis anddocking simulation. Journal of Molecular Liquids, 339, 116763. https://doi.org/10.1016/j.molliq.2021.116763
  • Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure-based drug design strategies. Molecules, 20(7), 13384–13421. https://doi.org/10.3390/molecules200713384
  • Ghosh, K., Rathi, S., & Arora, D. (2016). Fluorescence spectral studies on interaction of fluorescent probes with bovine serum albumin (BSA). Journal of Luminescence, 175, 135–140. https://doi.org/10.1016/j.jlumin.2016.01.029
  • Gnanaselvan, S., Yadav, S. A., & Manoharan, S. P. (2023). Structure-based virtual screening of anti-breast cancer compounds from Artemisia absinthium – Insights through molecular docking, pharmacokinetics, and molecular dynamic simulations. Journal of Biomolecular Structure & Dynamics, 1–19. https://doi.org/10.1080/07391102.2023.2212805
  • Goncharova, I., Orlov, S., & Urbanová, M. (2013). The location of the high-and low-affinity bilirubin-binding sites on serum albumin: Ligand-competition analysis investigated by circular dichroism. Biophysical Chemistry, 180-181, 55–65. https://doi.org/10.1016/j.bpc.2013.06.004
  • Hashemi-Shahraki, F., Shareghi, B., & Farhadian, S. (2021). Characterizing the binding affinity and molecular interplay between quinoline yellow and pepsin. Journal of Molecular Liquids, 341, 117317. https://doi.org/10.1016/j.molliq.2021.117317
  • Hirata, K., Kawai, A., Chuang, V. T. G., Sakurama, K., Nishi, K., Yamasaki, K., & Otagiri, M. (2022). Effects of myristate on the induced circular dichroism spectra of aripiprazole bound to human serum albumin: A structural–chemical investigation. ACS Omega, 7(5), 4413–4419. https://doi.org/10.1021/acsomega.1c06220
  • Jairajpuri, D. S., Fatima, S., & Jairajpuri, Z. S. (2015). Glycation induced physicochemical changes in low-density lipoprotein and its role in promoting cholesterol accumulation in macrophages along with antiglycation effect of aminoguanidine. Advances in Biological Chemistry, 5(5), 203–214. https://doi.org/10.4236/abc.2015.55017
  • Jattinagoudar, L., Meti, M., Nandibewoor, S., & Chimatadar, S. (2016). Evaluation of the binding interaction between bovine serum albumin and dimethyl fumarate, an anti-inflammatory drug by multispectroscopic methods. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 156, 164–171. https://doi.org/10.1016/j.saa.2015.11.026
  • Jorgensen, W. L. (2004). The many roles of computation in drug discovery. Science, 303(5665), 1813–1818. https://doi.org/10.1126/science.1096361
  • Kandagal, P. B., Ashoka, S., Seetharamappa, J., Shaikh, S. M. T., Jadegoud, Y., & Ijare, O. B. (2006). Study of the interaction of an anticancer drug with human and bovine serum albumin: Spectroscopic approach. Journal of Pharmaceutical and Biomedical Analysis, 41(2), 393–399. https://doi.org/10.1016/j.jpba.2005.11.037
  • Lakowicz, J. R., & Fu, Y. (2009). Modification of single molecule fluorescence near metallic nanostructures. Laser & Photonics Reviews, 3(1–2), 221–232. https://doi.org/10.1002/lpor.200810035
  • Li, G., Cheng, Y., Han, C., Song, C., Huang, N., & Du, Y. (2022). Pyrazole-containing pharmaceuticals: Target, pharmacological activity, and their SAR studies. RSC Medicinal Chemistry, 13(11), 1300–1321. https://doi.org/10.1039/d2md00206j
  • Liu, E. H., Qi, L. W., & Li, P. (2010). Structural relationship and binding mechanisms of five flavonoids with bovine serum albumin. Molecules, 15(12), 9092–9103. https://doi.org/10.3390/molecules15129092
  • Li, J., & Yao, P. (2009). Self-assembly of ibuprofen and bovine serum albumin-dextran conjugates leading to effective loading of the drug. Langmuir: The ACS Journal of Surfaces and Colloids, 25(11), 6385–6391. https://doi.org/10.1021/la804288u
  • Mermer, A. (2021). The importance of rhodanine scaffold in medicinal chemistry: A comprehensive overview. Mini-Reviews in Medicinal Chemistry, 21(6), 738–789. https://doi.org/10.2174/1389557521666201217144954
  • Mohammadi, M., Shareghi, B., Farhadian, S., & Saboury, A. A. (2021). The effect of sorbitol on the structure and activity of carboxypeptidase A: Insights from a spectroscopic and computational approach. Journal of Molecular Liquids, 330, 115710. https://doi.org/10.1016/j.molliq.2021.115710
  • Moman, R. N., Gupta, N., & Varacallo, M. (2022). Physiology, albumin. StatPearls.
  • Mousavi, S. M., Zarei, M., Hashemi, S. A., Babapoor, A., & Amani, A. M. (2019). A conceptual review of rhodanine: Current applications of antiviral drugs, anticancer and antimicrobial activities. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 1132–1148. https://doi.org/10.1080/21691401.2019.1573824
  • Naik, P. N., Chimatadar, S. A., & Nandibewoor, S. T. (2010). Interaction between a potent corticosteroid drug–dexamethasone with bovine serum albumin and human serum albumin: A fluorescence quenching and Fourier transformation infrared spectroscopy study. Journal of Photochemistry and Photobiology. B, Biology, 100(3), 147–159. https://doi.org/10.1016/j.jphotobiol.2010.05.014
  • Naseri, A., Hosseini, S., Rasoulzadeh, F., Rashidi, M. R., Zakery, M., & Khayamian, T. (2015). Interaction of norfloxacin with bovine serum albumin studied by different spectrometric methods; displacement studies, molecular modeling and chemometrics approaches. Journal of Luminescence, 157, 104–112. https://doi.org/10.1016/j.jlumin.2014.08.031
  • Pal, S., Saha, C., Hossain, M., Dey, S. K., & Kumar, G. S. (2012). Influence of galloyl moiety in interaction of epicatechin with bovine serum albumin: A spectroscopic and thermodynamic characterization. PLoS One, 7(8), e43321. https://doi.org/10.1371/journal.pone.0043321
  • Palleria, C., Di Paolo, A., Giofrè, C., Caglioti, C., Leuzzi, G., Siniscalchi, A., De Sarro, G., & Gallelli, L. (2013). Pharmacokinetic drug-drug interaction and their implication in clinical management. Journal of Research in Medical Sciences, 18(7), 601–610.
  • Phan, H. T., Bartelt-Hunt, S., Rodenhausen, K. B., Schubert, M., & Bartz, J. C. (2015). Investigation of bovine serum albumin (BSA) attachment onto self-assembled monolayers (SAMs) using combinatorial quartz crystal microbalance with dissipation (QCM-D) and spectroscopic ellipsometry (SE). PLoS One, 10(10), e0141282. https://doi.org/10.1371/journal.pone.0141282
  • Qi, X., Xu, D., Zhu, J., Wang, S., Peng, J., Gao, W., & Cao, Y. (2021). Studying the interaction mechanism between bovine serum albumin and lutein dipalmitate: Multi-spectroscopic and molecular docking techniques. Food Hydrocolloids. 113, 106513. https://doi.org/10.1016/j.foodhyd.2020.106513
  • Rahman, A. J., Kaur, L., Pathak, M., Singh, A., Verma, P., Singhal, R., Kumar, V., & Ojha, H. (2021). Spectroscopic studies of binding interactions of 2-chloroethylphenyl sulphide with bovine serum albumin. Journal of Molecular Liquids, 340, 117144. https://doi.org/10.1016/j.molliq.2021.117144
  • Rahman, A. J., Sharma, D., Kumar, D., Pathak, M., Singh, A., Kumar, V., Chawla, R., & Ojha, H. (2021). Spectroscopic and molecular modelling study of binding mechanism of bovine serum albumin with phosmet. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 244, 118803. https://doi.org/10.1016/j.saa.2020.118803
  • Sadeghi-Kaji, S., Shareghi, B., Saboury, A. A., & Farhadian, S. (2019). Investigation on the structure and function of porcine pancreatic elastase (PPE) under the influence of putrescine: A spectroscopy and molecular simulation study. Journal of Molecular Liquids, 289, 111115. https://doi.org/10.1016/j.molliq.2019.111115
  • Saeedi, M., Hadjiakhondi, A., Mohammad Nabavi, S., & Manayi, A. (2017). Heterocyclic compounds: Effective α-amylase and α-glucosidase inhibitors. Current Topics in Medicinal Chemistry, 17(4), 428–440. https://doi.org/10.2174/1568026616666160824104655
  • Sampath, S., Yadav, S. A., Meti, M., Kaveri, S., Subban, R., & Subramanyam, R. (2024). Elucidation of binding mechanism of rhodanine derivative P4OC on bovine serum albumin. Journal of Biomolecular Structure & Dynamics, 42(1), 475–482. https://doi.org/10.1080/07391102.2023.2194001
  • Shahabadi, N., & Fili, S. M. (2014). Molecular modeling and multi spectroscopic studies of the interaction of mesalamine with bovine serum albumin. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 118, 422–429. https://doi.org/10.1016/j.saa.2013.08.110
  • Subramanyam, R.,Gollapudi, A.,Bonigala, P.,Chinnaboina, M., &Amooru, D. G. (2009). Betulinic acid binding to human serum albumin: a study of protein conformation and binding affinity. Journal of Photochemistry and Photobiology. B, Biology, 94(1), 8–12. 10.1016/j.jphotobiol.2008.09.002 18945624
  • Truskewycz, A., Yin, H., Halberg, N., Lai, D. T. H., Ball, A. S., Truong, V. K., Rybicka, A. M., & Cole, I. (2022). Carbon dot therapeutic platforms: Administration, distribution, metabolism, excretion, toxicity, and therapeutic potential. Small, 18(16), e2106342. https://doi.org/10.1002/smll.202106342
  • Vinod, S. M., Murugan Sreedevi, S., Krishnan, A., Ravichandran, K., Karthikeyan, P., Kotteswaran, B., & Rajendran, K. (2023). Complexity of the role of various site-specific and selective Sudlow binding site drugs in the energetics and stability of the acridinedione dye–bovine serum albumin complex: A molecular docking approach. ACS Omega, 8(6), 5634–5654. https://doi.org/10.1021/acsomega.2c07111
  • Vlasiou, M. C., & Pafiti, K. S. (2020). Spectroscopic evaluation of Zn (II) complexes with drug analogues: Interactions with BSA and the pH effect on the drug-Zn (II) system. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 241, 118641. https://doi.org/10.1016/j.saa.2020.118641
  • Wani, T. A., AlRabiah, H., Bakheit, A. H., Kalam, M. A., & Zargar, S. (2017). Study of binding interaction of rivaroxaban with bovine serum albumin using multi-spectroscopic and molecular docking approach. Chemistry Central Journal, 11(1), 134. https://doi.org/10.1186/s13065-017-0366-1
  • Wani, T. A., Bakheit, A. H., Zargar, S., & Alamery, S. (2022). Mechanistic competitive binding interaction study between olmutinib and colchicine with model transport protein using spectroscopic and computer simulation approaches. Journal of Photochemistry and Photobiology A: Chemistry, 426, 113794. https://doi.org/10.1016/j.jphotochem.2022.113794
  • Yadav, S. A., Faruck, L. H., Subramanium, R., Surendren, L. K., & Bakshi, H. (2021). Screening and assessment of molecular mechanistic actions of 5-hydroxy-1-methylpiperidin-2-one against free radicals, lung cancer cell line (A549), and binding properties on bovine serum albumin. Future Journal of Pharmaceutical Sciences, 7(1), 1–11. https://doi.org/10.1186/s43094-021-00277-5
  • Yadav, S. A., Yeggoni, D. P., Devadasu, E., & Subramanyam, R. (2018). Molecular binding mechanism of 5-hydroxy-1-methylpiperidin-2-one with human serum albumin. Journal of Biomolecular Structure & Dynamics, 36(3), 810–817. https://doi.org/10.1080/07391102.2017.1300106
  • Yadollahi, E., Shareghi, B., & Farhadian, S. (2022). Noncovalent interactions between Quinoline yellow and trypsin: In vitro and in silico methods. Journal of Molecular Liquids, 353, 118826. https://doi.org/10.1016/j.molliq.2022.118826
  • Yeggoni, D. P., Rachamallu, A., & Subramanyam, R. (2016). Protein stability, conformational change and binding mechanism of human serum albumin upon binding of embelin and its role in disease control. Journal of Photochemistry and Photobiology. B, Biology, 160, 248–259. https://doi.org/10.1016/j.jphotobiol.2016.04.012
  • Zhang, Y. Z., Zhou, B., Zhang, X. P., Huang, P., Li, C. H., & Liu, Y. (2009). Interaction of malachite green with bovine serum albumin: Determination of the binding mechanism and binding site by spectroscopic methods. Journal of Hazardous Materials, 163(2–3), 1345–1352. https://doi.org/10.1016/j.jhazmat.2008.07.132

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.