215
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Anti-diabetic drug discovery using the bioactive compounds of Momordica charantia by molecular docking and molecular dynamics analysis

ORCID Icon, , , , , , , & ORCID Icon show all
Received 06 Jun 2023, Accepted 26 Jan 2024, Published online: 09 Feb 2024

References

  • Abdel-Moneim, A., El-Shahawy, A., Yousef, A. I., Abd El-Twab, S. M., Elden, Z. E., & Taha, M. (2020). Novel polydatin-loaded chitosan nanoparticles for safe and efficient type 2 diabetes therapy: In silico, in vitro and in vivo approaches. International Journal of Biological Macromolecules, 154, 1496–1504. https://doi.org/10.1016/j.ijbiomac.2019.11.031
  • Adedayo, A., & Famuti, A. (2023). In-silico studies of Momordica charantia extracts as potential candidates against SARS-CoV-2 targeting human main protease enzyme (Mpro). Informatics in Medicine Unlocked, 38(December 2022), 101216. https://doi.org/10.1016/j.imu.2023.101216
  • Adelusi, T. I., Abdul-Hammed, M., Idris, M. O., Kehinde, O. Q., Boyenle, I. D., Divine, U. C., Adedotun, I. O., Folorunsho, A. A., & Kolawole, O. E. (2021). Exploring the inhibitory potentials of Momordica charantia bioactive compounds against Keap1-Kelch protein using computational approaches. In Silico Pharmacology, 9(1), 39. https://doi.org/10.1007/s40203-021-00100-2
  • Adewale, O. O., Oduyemi, O. I., & Ayokunle, O. (2014). Oral administration of leaf extracts of Momordica charantia affect reproductive hormones of adult female Wistar rats. Asian Pacific Journal of Tropical Biomedicine, 4(Suppl 1), S521–S524. https://doi.org/10.12980/APJTB.4.2014C939
  • Adhish, M., & Manjubala, I. (2023). An in-silico approach to the potential modulatory effect of taurine on sclerostin (SOST) and its probable role during osteoporosis. Journal of Biomolecular Structure & Dynamics, 1–16. https://doi.org/10.1080/07391102.2023.2249103
  • Alam, F., Islam, M. A., Kamal, M. A., & Gan, S. H. (2018). Updates on Managing Type 2 Diabetes Mellitus with Natural Products: Towards Antidiabetic Drug Development. Current Medicinal Chemistry, 25(39), 5395–5431. https://doi.org/10.2174/0929867323666160813222436
  • Alam, S., Sarker, M. M. R., Sultana, T. N., Chowdhury, M. N. R., Rashid, M. A., Chaity, N. I., Zhao, C., Xiao, J., Hafez, E. E., Khan, S. A., & Mohamed, I. N. (2022). Antidiabetic phytochemicals from medicinal plants: Prospective candidates for new drug discovery and development. Frontiers in Endocrinology, 13(February), 800714. https://doi.org/10.3389/fendo.2022.800714
  • Anand, K., Tiloke, C., Naidoo, P., & Chuturgoon, A. A. (2017). Journal of photochemistry & photobiology, B : Biology phytonanotherapy for management of diabetes using green synthesis nanoparticles. Journal of Photochemistry and Photobiology. B, Biology, 173(March), 626–639. https://doi.org/10.1016/j.jphotobiol.2017.06.028
  • Arif, R., Ahmad, S., Mustafa, G., Mahrosh, H. S., Ali, M., Tahir Ul Qamar, M., & Dar, H. R. (2021). Molecular docking and simulation studies of antidiabetic agents devised from hypoglycemic polypeptide-P of Momordica charantia. BioMed Research International, 2021, 5561129–5561115. https://doi.org/10.1155/2021/5561129
  • Arkin, M. R., Tang, Y., & Wells, J. A. (2014). Small-molecule inhibitors of protein-protein interactions: Progressing toward the reality. Chemistry & Biology, 21(9), 1102–1114. https://doi.org/10.1016/j.chembiol.2014.09.001
  • Banerjee, S., Baidya, S. K., Ghosh, B., Nandi, S., Mandal, M., Jha, T., & Adhikari, N. (2023). Quantitative structural assessments of potential meprin β inhibitors by non-linear QSAR approaches and validation by binding mode of interaction analysis. New Journal of Chemistry, 47(15), 7051–7069. https://doi.org/10.1039/D2NJ04753E
  • Bhattarai, A., Priyadharshini, A., & Emerson, I. A. (2023). Investigating the binding affinity of andrographolide against human SARS-CoV-2 spike receptor-binding domain through docking and molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 41(22), 13438–13453. https://doi.org/10.1080/07391102.2023.2174596
  • Binkowski, T. A., Naghibzadeh, S., & Liang, J. (2003). CASTp : Computed Atlas of Surface Topography of proteins. Nucleic Acids Research, 31(13), 3352–3355. https://doi.org/10.1093/nar/gkg512
  • Bora, A. F. M., Kouame, K. J. E. P., Li, X., Liu, L., & Pan, Y. (2023). New insights into the bioactive polysaccharides, proteins, and triterpenoids isolated from bitter melon (Momordica charantia) and their relevance for nutraceutical and food application: A review. International Journal of Biological Macromolecules, 231(600), 123173. https://doi.org/10.1016/j.ijbiomac.2023.123173
  • Bortolotti, M., Mercatelli, D., & Polito, L. (2019). Momordica charantia, a nutraceutical approach for inflammatory related diseases. Frontiers in Pharmacology, 10(MAY), 486. https://doi.org/10.3389/fphar.2019.00486
  • Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM : The Biomolecular Simulation Program. Journal of Computational Chemistry, 30(10), 1545–1614. https://doi.org/10.1002/jcc
  • Case, D. A., Aktulga, H. M., Belfon, K., Ben-Shalom, I. Y., Brozell, S. R., & Cerutti, D. (2021). Amber 2021. University of California Press. https://ambermd.org/doc12/Amber21.pdf
  • Chatterjee, P., & Banerjee, S. (2023). Evaluating chemotherapeutic potential of soya-isoflavonoids against high penetrance genes in triple-negative breast cancer. Journal of Biomolecular Structure & Dynamics, 1–20. https://doi.org/10.1080/07391102.2023.2243352
  • Choudhury, A. A., & Rajeswari, V. D. (2021). Gestational diabetes mellitus - A metabolic and reproductive disorder. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 143, 112183. https://doi.org/10.1016/j.biopha.2021.112183
  • Choudhury, A. A., & Rajeswari, V. D. (2023). Computational analysis of potential drug-like compounds from Solanum torvum - A promising phytotherapeutics approach for the treatment of diabetes. Journal of Biomolecular Structure & Dynamics, 1–19. https://doi.org/10.1080/07391102.2023.2293279
  • Çiçek, S. S. (2022). Momordica charantia L.—Diabetes-Related Bioactivities, Quality Control, and Safety Considerations. Frontiers in Pharmacology, 13(May), 904643. https://doi.org/10.3389/fphar.2022.904643
  • da Silva, T. U., Pougy, K. D C., Albuquerque, M. G., da Silva Lima, C. H., & Machado, S. D P. (2022). Development of parameters compatible with the CHARMM36 force field for [Fe4S4]2+ clusters and molecular dynamics simulations of adenosine-5’-phosphosulfate reductase in GROMACS 2019. Journal of Biomolecular Structure & Dynamics, 40(8), 3481–3491. https://doi.org/10.1080/07391102.2020.1847687
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Dalal, V., Dhankhar, P., Singh, V., Singh, V., Rakhaminov, G., Golemi-Kotra, D., & Kumar, P. (2021). Structure-Based Identification of Potential Drugs Against FmtA of Staphylococcus aureus: Virtual Screening, Molecular Dynamics, MM-GBSA, and QM/MM. The Protein Journal, 40(2), 148–165. https://doi.org/10.1007/s10930-020-09953-6
  • Deng, Y., Ma, Y., Liu, H., Zhang, Y., Wei, Z., Liu, G., Tang, X., & Jia, X. (2022). Structure determination, bitterness evaluation and hepatic gluconeogenesis inhibitory activity of triterpenoids from the Momordica charantia fruit. Food Chemistry, 372(September 2021), 131224. https://doi.org/10.1016/j.foodchem.2021.131224
  • Deshpande, S., Bagewadi, Z., Khan, Y., Mahnashi, M., Shaikh, I., Alshehery, S., Khan, A., Patil, V., & Roy, S. (2023). Exploring the potential of phytocompounds for targeting epigenetic mechanisms in rheumatoid arthritis: An in silico study using similarity indexing. Molecules (Basel, Switzerland), 28(6), 2430. https://doi.org/10.3390/molecules28062430
  • Devaraji, V., Sivaraman, J., & Prabhu, S. (2024). Large-scale computational screening of Indian medicinal plants reveals Cassia angustifolia to be a potentially anti-diabetic. Journal of Biomolecular Structure & Dynamics, 42(1), 194–210. https://doi.org/10.1080/07391102.2023.2192886
  • Dhanasekaran, S., Pushparaj Selvadoss, P., Sundar Manoharan, S., Jeyabalan, S., & Devi Rajeswari, V. (2024). Revealing anti-fungal potential of plant-derived bioactive therapeutics in targeting secreted aspartyl proteinase (SAP) of Candida albicans: A molecular dynamics approach. Journal of Biomolecular Structure & Dynamics, 42(2), 710–724. https://doi.org/10.1080/07391102.2023.2196703
  • Dhanasekaran, S., Selvadoss, P. P., & Manoharan, S. S. (2023). Anti-fungal potential of structurally diverse FDA-approved therapeutics targeting Secreted Aspartyl Proteinase (SAP) of Candida albicans: An in silico drug repurposing approach. Applied Biochemistry and Biotechnology, 195(3), 1983–1998. https://doi.org/10.1007/s12010-022-04207-w
  • Doddagaddavalli, M. A., Kalalbandi, V. K. A., & Seetharamappa, J. (2023). Synthesis, characterization, crystallographic, binding, in silico and antidiabetic studies of novel 2,4-thiazolidinedione-phenothiazine molecular hybrids. Journal of Molecular Structure, 1276, 134625. https://doi.org/10.1016/j.molstruc.2022.134625
  • Famuyiwa, S. O., Ahmad, S., Olufolabo, K. O., Olanudun, E. A., Bano, N., Oguntimehin, S. A., Adesida, S. A., Oyelekan, E. I., Raza, K., & Faloye, K. O. (2023). Investigating the multitargeted anti-diabetic potential of cucurbitane-type triterpenoid from Momordica charantia : An LC-MS, docking-based MM\GBSA and MD simulation study. Journal of Biomolecular Structure & Dynamics, 1–12. https://doi.org/10.1080/07391102.2023.2291174
  • Fan, M., Kim, E. K., Choi, Y. J., Tang, Y., & Moon, S. H. (2019). The role of momordica charantia in resisting obesity. International Journal of Environmental Research and Public Health, 16(18), 3251. https://doi.org/10.3390/ijerph16183251
  • Firoz, A., & Talwar, P. (2023). Role of death-associated protein kinase 1 (DAPK1) in retinal degenerative diseases: an in-silico approach towards therapeutic intervention. Journal of Biomolecular Structure & Dynamics, 1, 1–13. https://doi.org/10.1080/07391102.2023.2227720
  • Gallardo-Hernández, A. G., González-Olvera, M. A., Revilla-Monsalve, C., Escobar, J. A., Castellanos-Fuentes, M., & Leder, R. (2019). Rapid automatic identification of parameters of the Bergman Minimal Model in Sprague-Dawley rats with experimental diabetes for adaptive insulin delivery. Computers in Biology and Medicine, 108(February), 242–248. https://doi.org/10.1016/j.compbiomed.2019.03.028
  • Garg, R. C. (2016). Nutraceuticals in glucose balance and diabetes. Nutraceuticals: Efficacy, Safety and Toxicity, 145–160. https://doi.org/10.1016/B978-0-12-802147-7.00012-7
  • Ghorbani, A. (2017). Mechanisms of antidiabetic effects of flavonoid rutin. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 96(October), 305–312. https://doi.org/10.1016/j.biopha.2017.10.001
  • Ghorbani, H., Ebadi, A., Faramarzi, M. A., Mojtabavi, S., Mahdavi, M., & Najafi, Z. (2023). Synthesis, in vitro α-glucosidase inhibitory activity and molecular dynamics simulation of some new coumarin-fused 4H-pyran derivatives as potential anti-diabetic agents. Journal of Molecular Structure, 1284, 135349. https://doi.org/10.1016/j.molstruc.2023.135349
  • Hashemi-Shahraki, F., Shareghi, B., & Farhadian, S. (2023). Investigation of the interaction behavior between quercetin and pepsin by spectroscopy and MD simulation methods. International Journal of Biological Macromolecules, 227(October 2022), 1151–1161. https://doi.org/10.1016/j.ijbiomac.2022.11.296
  • Henzler-Wildman, K., & Kern, D. (2007). Dynamic personalities of proteins. Nature, 450(7172), 964–972. https://doi.org/10.1038/nature06522
  • Hollingsworth, S. A., & Dror, R. O. (2018). Review molecular dynamics simulation for All. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
  • Jia, S., Shen, M., Zhang, F., & Xie, J. (2017). Recent advances in momordica charantia: Functional components and biological activities. International Journal of Molecular Sciences, 18(12), 2555. https://doi.org/10.3390/ijms18122555
  • Khan, M., Patujo, J., Mushtaq, I., Ishtiaq, A., Tahir, M. N., Bibi, S., Khan, M. S., Ullah, N., Mustafa, G., Mirza, B., Badshah, A., & Murtaza, I. (2022). Anti-diabetic potential, crystal structure, molecular docking, DFT, and optical-electrochemical studies of new dimethyl and diethyl carbamoyl-N, N′-disubstituted based thioureas. Journal of Molecular Structure, 1253, 132207. https://doi.org/10.1016/j.molstruc.2021.132207
  • Kumari, A., Rajput, V. S., Nagpal, P., Kukrety, H., Grover, S., & Grover, A. (2022). Dual inhibition of SARS-CoV-2 spike and main protease through a repurposed drug, rutin. Journal of Biomolecular Structure & Dynamics, 40(11), 4987–4999. https://doi.org/10.1080/07391102.2020.1864476
  • Lanka, G., Begum, D., Banerjee, S., Adhikari, N., P, Y., & Ghosh, B. (2023). Pharmacophore-based virtual screening, 3D QSAR, Docking, ADMET, and MD simulation studies: An in silico perspective for the identification of new potential HDAC3 inhibitors. Computers in Biology and Medicine, 166(September), 107481. https://doi.org/10.1016/j.compbiomed.2023.107481
  • Lankatillake, C., Huynh, T., & Dias, D. A. (2019). Understanding glycaemic control and current approaches for screening antidiabetic natural products from evidence-based medicinal plants. Plant Methods, 15(1), 105. https://doi.org/10.1186/s13007-019-0487-8
  • Li, J., Huang, J., Jiang, T., Tu, L., Cui, L., Cui, J., Ma, X., Yao, X., Shi, Y., Wang, S., Wang, Y., Liu, J., Li, Y., Zhou, C., Hu, X., & Xu, J. (2022). A multi-step approach for tongue image classification in patients with diabetes. Computers in Biology and Medicine, 149(July), 105935. https://doi.org/10.1016/j.compbiomed.2022.105935
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64(SUPPL), 4–17. https://doi.org/10.1016/j.addr.2012.09.019
  • Maradesha, T., Patil, S. M., Phanindra, B., Achar, R. R., Silina, E., Stupin, V., & Ramu, R. (2022). Multiprotein inhibitory effect of dietary polyphenol rutin from whole green jackfruit flour targeting different stages of diabetes mellitus: Defining a bio-computational stratagem. Separations, 9(9), 262. https://doi.org/10.3390/separations9090262
  • Mel, M. M. R. D., Gunathilake, K. D. P. P., & Fernando, C. A. N. (2020). Formulation of microencapsulated rutin and evaluation of bioactivity and stability upon in vitro digestive and dialysis conditions. International Journal of Biological Macromolecules, 159, 316–323. https://doi.org/10.1016/j.ijbiomac.2020.05.085
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., Olson, A. J., & Al, M. E. T. (1998). Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Muronga, M., Quispe, C., Tshikhudo, P. P., Msagati, T. A. M., Mudau, F. N., Martorell, M., Salehi, B., Abdull Razis, A. F., Sunusi, U., Kamal, R. M., & Sharifi-Rad, J. (2021). Three selected edible crops of the genus momordica as potential sources of phytochemicals: biochemical, nutritional, and medicinal values. Frontiers in Pharmacology, 12(May), 625546. https://doi.org/10.3389/fphar.2021.625546
  • Murphree, D. H., Arabmakki, E., Ngufor, C., Storlie, C. B., & McCoy, R. G. (2018). Stacked classifiers for individualized prediction of glycemic control following initiation of metformin therapy in type 2 diabetes. Computers in Biology and Medicine, 103(October), 109–115. https://doi.org/10.1016/j.compbiomed.2018.10.017
  • Murugesan, A., Yadav, S. K. R., & Dixit, A. (2022). Current Research in Biotechnology Anti-hyperglycemic activity of HPLC-fractionated Momordica charantia seed extract enriched in a novel napin-like protein in experimental diabetic rats and its validation with recombinant napin-like protein. Current Research in Biotechnology, 4(February), 179–189. https://doi.org/10.1016/j.crbiot.2022.03.001
  • Nursamsiar, Nur, Syamsu, Febrina, Ellin, Asnawi, Aiyi, Syafiie, S., (2022). Synthesis and inhibitory activity of curculigoside a derivatives as potential anti-diabetic agents with β-Cell apoptosis. Journal of Molecular Structure, 1265, 133292. https://doi.org/10.1016/j.molstruc.2022.133292
  • Oyelere, S. F., Ajayi, O. H., Ayoade, T. E., Santana Pereira, G. B., Dayo Owoyemi, B. C., Ilesanmi, A. O., & Akinyemi, O. A. (2022). A detailed review on the phytochemical profiles and anti-diabetic mechanisms of Momordica charantia. Heliyon, 8(4), e09253. https://doi.org/10.1016/j.heliyon.2022.e09253
  • Pahlavani, N., Roudi, F., Zakerian, M., Ferns, G. A., Navashenaq, J. G., Mashkouri, A., Ghayour-Mobarhan, M., & Rahimi, H. (2019). Possible molecular mechanisms of glucose-lowering activities of Momordica charantia (karela) in diabetes. Journal of Cellular Biochemistry, 120(7), 10921–10929. https://doi.org/10.1002/jcb.28483
  • Paul, A., Azhar, S., Das, P. N., Bairagi, N., & Chatterjee, S. (2022). Elucidating the metabolic characteristics of pancreatic β-cells from patients with type 2 diabetes (T2D) using a genome-scale metabolic modeling. Computers in Biology and Medicine, 144(March), 105365. https://doi.org/10.1016/j.compbiomed.2022.105365
  • Ponnusamy, N., Pillai, G., & Arumugam, M. (2023). Computational investigation of phytochemicals identified from medicinal plant extracts against tuberculosis. Journal of Biomolecular Structure & Dynamics, 1–14. https://doi.org/10.1080/07391102.2023.2213341
  • Prince, P. S. M., & Kannan, N. K. (2006). Protective effect of rutin on lipids, lipoproteins, lipid metabolizing enzymes and glycoproteins in streptozotocin-induced diabetic rats. The Journal of Pharmacy and Pharmacology, 58(10), 1373–1383. https://doi.org/10.1211/jpp.58.10.0011
  • Puttaswamy, H., Gowtham, H. G., Ojha, M. D., Yadav, A., Choudhir, G., Raguraman, V., Kongkham, B., Selvaraju, K., Shareef, S., Gehlot, P., Ahamed, F., & Chauhan, L. (2020). In silico studies evidenced the role of structurally diverse plant secondary metabolites in reducing SARS-CoV-2 pathogenesis. Scientific Reports, 10(1), 20584. https://doi.org/10.1038/s41598-020-77602-0
  • Rahman, Md Mominur, Dhar, Puja Sutro, Anika, Fazilatunnesa, Ahmed, Limon, Islam, Md Rezaul, Sultana, Nazneen Ahmeda, Cavalu, Simona, Pop, Ovidiu, Rauf, Abdur, Sumaia, (2022). Exploring the plant-derived bioactive substances as antidiabetic agent : An extensive review.Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 152(June), 113217. https://doi.org/10.1016/j.biopha.2022.113217
  • Ramachandran, G. N., Ramakrishnan, C., & Sasisekharan, V. (1963). Stereochemistry of polypeptide chain configurations. Journal of Molecular Biology, 7(1), 95–99. https://doi.org/10.1016/S0022-2836(63)80023-6
  • Ru, Y., Liu, K., Kong, X., Li, X., Shi, X., & Chen, H. (2020). Synthesis of selenylated polysaccharides from Momordica charantia L. and its hypoglycemic activity in streptozotocin-induced diabetic mice. International Journal of Biological Macromolecules, 152, 295–304. https://doi.org/10.1016/j.ijbiomac.2020.02.288
  • Sharma, P., Joshi, T., Joshi, T., Chandra, S., & Tamta, S. (2021). Molecular dynamics simulation for screening phytochemicals as α-amylase inhibitors from medicinal plants. Journal of Biomolecular Structure & Dynamics, 39(17), 6524–6538. https://doi.org/10.1080/07391102.2020.1801507
  • Si, Y. X., Yin, S. J., Oh, S., Wang, Z. J., Ye, S., Yan, L., Yang, J. M., Park, Y. D., Lee, J., & Qian, G. Y. (2012). An integrated study of tyrosinase inhibition by rutin: Progress using a computational simulation. Journal of Biomolecular Structure & Dynamics, 29(5), 999–1012. https://doi.org/10.1080/073911012010525028
  • Smith, J. L., Fischetti, R. F., & Yamamoto, M. (2012). Micro-crystallography comes of age. Current Opinion in Structural Biology, 22(5), 602–612. https://doi.org/10.1016/j.sbi.2012.09.001
  • Solis, F. J., & Wets, R. J. B. (1981). Minimization by random search techniques. Mathematics of Operations Research, 6(1), 19–30. https://doi.org/10.1287/moor.6.1.19
  • Sun, K., Ding, M., Fu, C., Li, P., Li, T., Fang, L., Xu, J., & Zhao, Y. (2023). Effects of dietary wild bitter melon (Momordica charantia var. abbreviate Ser.) extract on glucose and lipid metabolism in HFD/STZ-induced type 2 diabetic rats. Journal of Ethnopharmacology, 306(December 2022), 116154. https://doi.org/10.1016/j.jep.2023.116154
  • Takase, S., Kera, K., Hirao, Y., Hosouchi, T., Kotake, Y., Nagashima, Y., Mannen, K., Suzuki, H., & Kushiro, T. (2019). Identification of triterpene biosynthetic genes from Momordica charantia using RNA-seq analysis. Bioscience, Biotechnology, and Biochemistry, 83(2), 251–261. https://doi.org/10.1080/09168451.2018.1530096
  • Tan, H. F., & Gan, C. Y. (2016). Polysaccharide with antioxidant, α-amylase inhibitory and ACE inhibitory activities from Momordica charantia. International Journal of Biological Macromolecules, 85, 487–496. https://doi.org/10.1016/j.ijbiomac.2016.01.023
  • Thomas, J., Kumar, S., & Satija, J. (2023). Integrated molecular and quantum mechanical approach to identify novel potent natural bioactive compound against 2′-O-methyltransferase (nsp16) of SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 1–14. https://doi.org/10.1080/07391102.2023.2206287
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/nar/gky473
  • Udrea, A. M., Gradisteanu Pircalabioru, G., Boboc, A. A., Mares, C., Dinache, A., Mernea, M., & Avram, S. (2021). Advanced bioinformatics tools in the pharmacokinetic profiles of natural and synthetic compounds with anti-diabetic activity. Biomolecules, 11(11), 1692. https://doi.org/10.3390/biom11111692
  • Van Andel, T., De Boer, H. J., Barnes, J., & Vandebroek, I. (2014). Medicinal plants used for menstrual disorders in Latin America, the Caribbean, sub-Saharan Africa, South and Southeast Asia and their uterine properties: A review. Journal of Ethnopharmacology, 155(2), 992–1000. https://doi.org/10.1016/j.jep.2014.06.049
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2009). CHARMM general force field : A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc
  • Wadghiri, M. Z., Idri, A., El Idrissi, T., & Hakkoum, H. (2022). Ensemble blood glucose prediction in diabetes mellitus: A review. Computers in Biology and Medicine, 147(May), 105674. https://doi.org/10.1016/j.compbiomed.2022.105674
  • Xu, B., Li, Z., Zeng, T., Zhan, J., Wang, S., Ho, C.-T., & Li, S. (2022). Bioactives of momordica charantia as potential anti-diabetic/hypoglycemic agents. Molecules (Basel, Switzerland), 27(7), 1–17. https://doi.org/10.3390/molecules27072175
  • Yeung, A. W. K., Tzvetkov, N. T., Durazzo, A., Lucarini, M., Souto, E. B., Santini, A., Gan, R. Y., Jozwik, A., Grzybek, W., Horbańczuk, J. O., Mocan, A., Echeverría, J., Wang, D., & Atanasov, A. G. (2021). Natural products in diabetes research: Quantitative literature analysis. Natural Product Research, 35(24), 5813–5827. https://doi.org/10.1080/14786419.2020.1821019
  • Zackria, A. A., Pattabiraman, R., Murthy, T. P. K., Kumar, S. B., Mathew, B. B., & Biju, V. G. (2022). Computational screening of natural compounds from Salvia plebeia R. Br. for inhibition of SARS-CoV-2 main protease. Vegetos (Bareilly, India), 35(2), 345–359. https://doi.org/10.1007/s42535-021-00304-z
  • Zhang, M. Q., & Wilkinson, B. (2007). Drug discovery beyond the “rule-of-five. Current Opinion in Biotechnology, 18(6), 478–488. https://doi.org/10.1016/j.copbio.2007.10.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.