156
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In-silico and in-vitro evaluation of antifungal bioactive compounds from Streptomyces sp. strain 130 against Aspergillus flavus

ORCID Icon, , , , , , ORCID Icon, , , , , , , & ORCID Icon show all
Received 17 Jul 2023, Accepted 25 Jan 2024, Published online: 06 Feb 2024

References

  • Abubakar, M., & Majinda, R. (2016). GC-MS analysis and preliminary antimicrobial activity of Albizia adianthifolia (Schumach) and Pterocarpus angolensis (DC). Medicines (Basel, Switzerland), 3(1), 3. https://doi.org/10.3390/medicines3010003
  • Acar Çevik, U., Celik, I., İnce, U., Maryam, Z., Ahmad, I., Patel, H., Özkay, Y., & Kaplancıklı, Z. A. (2022). Synthesis, biological evaluation, and molecular modeling studies of new 1,3,4-thiadiazole derivatives as potent antimicrobial agents. Chemistry & Biodiversity, 20(3), e202201146. https://doi.org/10.1002/cbdv.202201146
  • Agüero, M. B., Svetaz, L., Sánchez, M., Luna, L., Lima, B., López, M. L., Zacchino, S., Palermo, J., Wunderlin, D., Feresin, G. E., & Tapia, A. (2011). Argentinean andean propolis associated with the medicinal plant Larrea nitida Cav. (Zygophyllaceae). HPLC–MS and GC–MS characterization and antifungal activity. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 49(9), 1970–1978. https://doi.org/10.1016/j.fct.2011.05.008
  • Ahmed Atto Al-Shuaeeb, R., Abd El-Mageed, H., Ahmed, S., Mohamed, H. S., Hamza, Z. S., Rafi, M. O., Ahmad, I., & Patel, H. (2023). In silico investigation and potential therapeutic approaches of isoquinoline alkaloids for neurodegenerative diseases: Computer-aided drug design perspective. Journal of Biomolecular Structure & Dynamics, 41(23), 14484–14496. May 15) https://doi.org/10.1080/07391102.2023.2212778
  • Alam, K., Mazumder, A., Sikdar, S., Zhao, Y. M., Hao, J., Song, C., Wang, Y., Sarkar, R., Islam, S., Zhang, Y., & Li, A. (2022). Streptomyces: The biofactory of secondary metabolites. Frontiers in Microbiology, 13, 968053. https://doi.org/10.3389/fmicb.2022.968053
  • Alameri, M. M., Kong, A. S.-Y., Aljaafari, M. N., Ali, H. A., Eid, K., Sallagi, M. A., Cheng, W.-H., Abushelaibi, A., Lim, S.-H E., Loh, J.-Y., & Lai, K.-S. (2023). Aflatoxin Contamination: An Overview on Health Issues, Detection and Management Strategies. Toxins, 15(4), 246. https://doi.org/10.3390/toxins15040246
  • Arancibia, L. A., Naspi, C. V., Pucci, G. N., Arce, M. E., & Colloca, C. B. (2016). Biological activity of 1-heneicosanol isolated from Senecio coluhuapiensis, an endemic species from Patagonia. Argentina. Pharm. Chem. J, 3(4), 73–77.
  • Arumugam, T., Ramalingam, A., Guerroudj, A. R., Sambandam, S., Boukabcha, N., & Chouaih, A. (2023). Conformation and vibrational spectroscopic analysis of 2,6-bis(4-fluorophenyl)-3,3-dimethylpiperidin-4-one (BFDP) by DFT method: A potent anti-Parkinson’s, anti-lung cancer, and anti-human infectious agent. Heliyon, 9(11), e21315. https://doi.org/10.1016/j.heliyon.2023.e21315
  • Awla, H., Kadir, J., Othman, R., Rashid, T., & Wong, M. (2016). Bioactive Compounds Produced by Streptomyces sp. Isolate UPMRS4 and Antifungal Activity against Pyricularia oryzae. American Journal of Plant Sciences, 07(07), 1077–1085. https://doi.org/10.4236/ajps.2016.77103
  • Awuchi, C. G., Ondari, E. N., Ogbonna, C. U., Upadhyay, A. K., Baran, K., Okpala, C. O. R., Korzeniowska, M., & Guiné, R. P. F. (2021). Mycotoxins Affecting Animals, Foods, Humans, and Plants: Types, Occurrence, Toxicities, Action Mechanisms, Prevention, and Detoxification Strategies—A Revisit. Foods (Basel, Switzerland), 10(6), 1279. https://doi.org/10.3390/foods10061279
  • Ayipo, Y. O., Ahmad, I., Chong, C. F., Zainurin, N. A., Najib, S. Y., Patel, H., & Mordi, M. N. (2024). Carbazole derivatives as promising competitive and allosteric inhibitors of human serotonin transporter: Computational pharmacology. Journal of Biomolecular Structure & Dynamics, 42(2), 993–1014. https://doi.org/10.1080/07391102.2023.2198016
  • Ayuso-Sacido, A., & Genilloud, O. (2005). New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: Detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microbial Ecology, 49(1), 10–24.https://doi.org/10.1007/s00248-004-0249-6 d
  • Balan, B., Dhaulaniya, A. S., Kumar, M., Kumar, M., & Kumar, P. (2024). Aflatoxins in food: Prevalence, health effects, and emerging trends in its mitigation-An updated review. Food Safety and Health, 2, 39–71. https://doi.org/10.1002/fsh3.12030
  • Banakar, P., & Jayaraj, M. (2018). GC-MS analysis of bioactive compounds from ethanolic leaf extract of Waltheria indica Linn. and their pharmacological activities. International Journal of Pharmaceutical Sciences and Research. 9(5), 2005–2010. https://doi.org/10.13040/IJPSR.0975-8232.9(5).2005-10
  • Bandres, M. V., Modi, P., & Sharma, S. (2023). Aspergillus Fumigatus. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK482464/
  • Barac, A., Ong David, S. Y., Jovancevic, L., Peric, A., Surda, P., Tomic, S. V., & Rubino, S. (2018). Fungi-induced upper and lower respiratory tract allergic diseases: One entity. Frontiers in Microbiology, 9, 583. https://doi.org/10.3389/fmicb.2018.00583
  • Belakhdar, G., Benjouad, A., & Abdennebi, E. H. (2015). Determination of some bioactive chemical constituents from ThesiumhumileVahl. Journal of Materials and Environmental Science. 6(10)2015), 2778–2783.
  • Benet, L. Z., Hosey, C. M., Ursu, O., & Oprea, T. I. (2016). BDDCS, the Rule of 5 and drugability. Advanced Drug Delivery Reviews, 101, 89–98. https://doi.org/10.1016/j.addr.2016.05.007
  • Benkerroum, N. (2020). Chronic and acute toxicities of aflatoxins: Mechanisms of action. International Journal of Environmental Research and Public Health, 17(2), 423. https://doi.org/10.3390/ijerph17020423
  • Bervis, N., Lorán, S., Juan, T., Carramiñana, J. J., Herrera, A., Ariño, A., & Herrera, M. (2021). Field monitoring of aflatoxins in feed and milk of high-yielding dairy cows under two feeding systems. Toxins, 13(3), 201. https://doi.org/10.3390/toxins13030201
  • Bouali, N., Ahmad, I., Patel, H., Alhejaili, E. B., Hamadou, W. S., Badraoui, R., Hadj Lajimi, R., Alreshidi, M., Siddiqui, A. J., Adnan, M., Abdulhakeem, M. A., Bazaid, A. S., Patel, M., Saeed, M., Snoussi, M., & Noumi, E. (2023). GC–MS screening of the phytochemical composition of Ziziphus honey: ADME properties and in vitro/in silico study of its antimicrobial activity. Journal of Biomolecular Structure & Dynamics, 16, 1–13. https://doi.org/10.1080/07391102.2023.2205945
  • Boussaada, O., Ammar, S., Mahjoub, M. A., Saidana, D., Chriaa, J., Chraif, I., Daami, M., Helal, A. N., & Mighri, Z. (2008). Chemical composition and antimicrobial activity of volatile components from capitula, stems-leaves and aerial parts of Mantisalcaduriaei Briq. et Cavill growing wild in Tunisia. Journal of Essential Oil Research. 21(2), 179–184. https://doi.org/10.1080/10412905.2009.9700142
  • Caceres, I., Khoury, A. A., Khoury, R. E., Lorber, S., Oswald, I. P., Khoury, A. E., Atoui, A., Puel, O., & Bailly, J. D. (2020). Aflatoxin Biosynthesis and Genetic Regulation: A Review. Toxins, 12(3), 150. https://doi.org/10.3390/toxins12030150
  • Chanthasena, P., Hua, Y., Rosyidah, A., Pathom-Aree, W., Limphirat, W., & Nantapong, N. (2022). Isolation and identification of bioactive compounds from Streptomyces actinomycinicus PJ85 and Their In vitro antimicrobial activities against methicillin-resistant Staphylococcus aureus. Antibiotics (Basel, Switzerland), 11(12), 1797. https://doi.org/10.3390/antibiotics11121797
  • Daina, A., & Zoete, V. (2016). A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Dandekar, R., Fegade, B., & Bhaskar, V. H. (2015). GC-MS analysis of phytoconstituents in alcohol extract of Epiphyllum oxypetalum leaves. J.Pharmacogn. Phytochem, 4(1), 149–154.
  • Dawood, A.-B., Shari, F., Najm, M., & Al-Salman, H. N. K. (2019). Antimicrobial activity of the compound 2-piperidinone, N-[4-Bromo-n-butyl]-Extracted from pomegranate peels. Asian J. Pharm, 13, 4653. https://doi.org/10.22377/ijgp.v13i01.3008.
  • Dhakal, A., Hashmi, M. F., & Sbar, E. (2023). Aflatoxin Toxicity. StatPearls Publishing.
  • Donald, L., Pipite, A., Subramani, R., Owen, J., Keyzers, R. A., & Taufa, T. (2022). Streptomyces: Still the biggest producer of new natural secondary metabolites, a current perspective. Microbiological Research. 13(3), 418–465. https://doi.org/10.3390/microbiolres13030031
  • Dos Reis, C. M., da Rosa, B. V., da Rosa, G. P., do Carmo, G., Morandini, L., Ugalde, G. A., Kuhn, K. R., Morel, A. F., Jahn, S. L., & Kuhn, R. C. (2019). Antifungal and antibacterial activity of extracts produced from Diaportheschini. Journal of Biotechnology, 294, 30–37. https://doi.org/10.1016/j.jbiotec.2019.01.022
  • Du, S., Tian, Z., Yang, D., Li, X., Li, H., Jia, C., Che, C., Wang, M., & Qin, Z. (2015). Synthesis, antifungal activity and structure-activity relationships of novel 3-(difluoromethyl)-1-methyl-1h-pyrazole-4-carboxylic acid amides. Molecules (Basel, Switzerland), 20(5), 8395–8408. https://doi.org/10.3390/molecules20058395
  • Elsaman, T., Ahmad, I., Eltayib, E. M., Suliman Mohamed, M., Yusuf, O., Saeed, M., Patel, H., & Mohamed, M. A. (2023). Flavonostilbenes natural hybrids from Rhamnoneuronbalansae as potential antitumors targeting ALDH1A1: Molecular docking, ADMET, MM-GBSA calculations and molecular dynamics studies. Journal of Biomolecular Structure & Dynamics, 1, 1–18. https://doi.org/10.1080/07391102.2023.2218936
  • Fan, K., Yu, Y., Hu, Z., Qian, S., Zhao, Z., Meng, J., Zheng, S., Huang, Q., Zhang, Z., Nie, D., & Han, Z. (2023). Antifungal activity and action mechanisms of 2,4-Di-tert-butylphenol against Ustilaginoidea virens. Journal of Agricultural and Food Chemistry, 71(46), 17723–17732. https://doi.org/10.1021/acs.jafc.3c05157
  • Girase, R., Ahmad, I., & Patel, H. (2023). Bioisosteric modification of Linezolid identified the potential M. tuberculosis protein synthesis inhibitors to overcome the myelosuppression and serotonergic toxicity associated with Linezolid in the treatment of the multi-drug resistance tuberculosis (MDR-TB). Journal of Biomolecular Structure & Dynamics, 25, 1–16. https://doi.org/10.1080/07391102.2023.2203254
  • Githinji, C. G., Mbugua, P., Kanui, T., & Kariuki, D. K. (2012). Analgesic and anti-inflammatory activities of 9-Hexacosene and Stigmasterol isolated from Mondiawhytei. Phytopharm, 2, 212–223.
  • Gomathi, D., Kalaiselvi, M., Ravikumar, G., Devaki, K., & Uma, C. (2015). GC-MS analysis of bioactive compounds from the whole plant ethanolic extract of Evolvulus alsinoides (L.) L. Journal of Food Science and Technology, 52(2), 1212–1217. https://doi.org/10.1007/s13197-013-1105-9
  • Hopwood, D. A., Bibb, M. J., Chater, K. F., Kieser, T., Bruton, C. J., Kiesser, H. M., Lydiate, D. J., Smith, C. P., Ward, J. M., & Schrempf, H. (1985). Methods for isolating Streptomyces “total” DNA. In Genetic manipulation of Streptomyces: A laboratory manual. John Innes Foundation.
  • Huang, B., Chen, Q., Wang, L., Gao, X., Zhu, W., Mu, P., & Deng, Y. (2020). Aflatoxin B1 induces neurotoxicity through reactive oxygen species generation, DNA damage, apoptosis, and S-Phase cell cycle arrest. International Journal of Molecular Sciences, 21(18), 6517. https://doi.org/10.3390/ijms21186517
  • Ibnouf, E. O., Aldawsari, M. F., & Ali Waggiallah, H. (2022). Isolation and extraction of some compounds that act as antimicrobials from actinomycetes. Saudi Journal of Biological Sciences, 29(8), 103352. https://doi.org/10.1016/j.sjbs.2022.103352
  • Ibrahim, W. M., Olama, Z. A., Abou-Elela, G. M., Ramadan, H. S., Hegazy, G. E., & El Badan, D. E. S. (2023). Exploring the antimicrobial, antiviral, antioxidant, and antitumor potentials of marine Streptomyces tunisiensis W4MT573222 pigment isolated from Abu-Qir sediments, Egypt. Microbial Cell Factories, 22(1), 94. https://doi.org/10.1186/s12934-023-02106-1
  • Iqbal, S. Z., Asi, M. R., & Ariño, A. (2017). Aflatoxins, reference module in life sciences. Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.06021-0.
  • Jabbar, A. A., Abdullah, F. O., Abdulrahman, K. K., Galali, Y., & Sardar, A. S. (2022). GC-MS Analysis of Bioactive Compounds in Methanolic Extracts of Papaver decaisnei and Determination of Its Antioxidants and Anticancer Activities. Journal of Food Quality. 2022, 1–12. /2022/1405157. https://doi.org/10.1155/2022/1405157
  • Jaddoa, H., Hameed, I., & Mohammed, G. (2016). Analysis of volatile metabolites released by Staphylococcus aureus using gas chromatography-mass spectrometry and determination of its antifungal activity. Oriental Journal of Chemistry, 32(4), 2107–2116. https://doi.org/10.13005/ojc/320439
  • Jagatap, V. R., Ahmad, I., Sriram, D., Kumari, J., Adu, D. K., Ike, B. W., Ghai, M., Ansari, S. A., Ansari, I. A., Wetchoua, P. O. M., Karpoormath, R., & Patel, H. (2023). Isoflavonoid and furanochromone natural products as potential DNA Gyrase inhibitors: Computational, spectral, and antimycobacterial studies. ACS Omega, 8(18), 16228–16240. https://doi.org/10.1021/acsomega.3c00684
  • Jiang, Y., Ogunade, I. M., Vyas, D., & Adesogan, A. T. (2021). Aflatoxin in dairy cows: Toxicity, occurrence in feedstuffs and milk and dietary mitigation strategies. Toxins, 13(4), 283. https://doi.org/10.3390/toxins13040283
  • Jin, H., Ma, N., Li, X., Kang, M., Guo, M., & Song, L. (2019). Application of GC/MS-Based Metabonomic Profiling in Studying the Therapeutic Effects of Aconitum carmichaeli with Ampelopsis japonica Extract on Collagen-Induced Arthritis in Rats. Molecules (Basel, Switzerland), 24(10), 1934. https://doi.org/10.3390/molecules24101934
  • Joo, S., Kim, Y. I., & Lee, D.-I. (2010). Antimicrobial and antioxidant properties of secondary metabolites from white rose flower. The Plant Pathology Journal, 26(1), 57–62. https://doi.org/10.5423/PPJ.2010.26.1.057.
  • Khan, M., Khan, S., Alshammary, F. L., Zaidi, S., Singh, V., Ahmad, I., Patel, H., Gupta, V. K., & Haque, S. (2023). In silico analysis to identify potential antitubercular molecules in Morus alba through virtual screening and molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 8, 1–8. https://doi.org/10.1080/07391102.2023.2209648
  • Khanna, M., & Solanki, R. (2012). Streptomyces antibioticalis, a novel species from a sanitary landfill soil. Indian Journal of Microbiology, 52(4), 605–611. 0309-4. https://doi.org/10.1007/s12088-012-0309-4
  • Khatua, S., Pandey, A., Biswas, S., Surjyo, C., & Biswas, J. (2016). Phytochemical evaluation and antimicrobial properties of Trichosanthes dioica root extract.J. Pharmacogn. Phytochem, 410, 410–413.
  • Kovač, T., Šarkanj, B., Crevar, B., Kovač, M., Lončarić, A., Strelec, I., Ezekiel, C. N., Sulyok, M., & Krska, R. (2018). Aspergillus flavus NRRL 3251 growth, oxidative status, and aflatoxins production ability in-vitro under different illumination regimes. Toxins, 10(12), 528. https://doi.org/10.3390/toxins10120528
  • Kumar, A., Pathak, H., Bhadauria, S., & Sudan, J. (2021). Aflatoxin contamination in food crops: Causes, detection, and management: A review. Food Production, Processing and Nutrition, 3(1), 17. https://doi.org/10.1186/s43014-021-00064-y
  • Kumar, P., Kundu, A., Kumar, M., Solanki, R., & Kapur, M. K. (2019). Exploitation of potential bioactive compounds from two soil derived actinomycetes, Streptomyces sp. strain 196 and RI.24. Microbiological Research, 229, 126312. https://doi.org/10.1016/j.micres.2019.126312
  • Liao, J., He, Z., Xia, Y., Lei, Y., & Liao, B. (2020). A review on biosynthesis and genetic regulation of aflatoxin production by major Aspergillus fungi. Oil Crop Science, 5(4), 166–173. https://doi.org/10.1016/j.ocsci.2020.11.001
  • Makhafola, T., Elgorashi, E., Mcgaw, L., Awouafack, M. D., Verschaeve, L., & Eloff, J. (2017). Isolation and characterization of the compounds responsible for the antimutagenic activity of Combretum microphyllum (Combretaceae) leaf extracts. BMC Complementary and Alternative Medicine, 17(1), 446. https://doi.org/10.1186/s12906-017-1935-5.
  • Mamo, F. T., Abate, B. A., Zheng, Y., Nie, C., He, M., & Liu, Y. (2021). Distribution of Aspergillus fungi and recent aflatoxin reports, health risks, and advances in developments of biological mitigation strategies in China. Toxins, 13(10), 678. https://doi.org/10.3390/toxins13100678
  • Martin, Y. C. (2005). A bioavailability score. Journal of Medicinal Chemistry, 48(9), 3164–3170. https://doi.org/10.1021/jm0492002
  • Mazumdar, R., Dutta, P. P., Saikia, J., Borah, J. C., & Thakur, D. (2023). Streptomyces sp. Strain PBR11, a Forest-Derived Soil Actinomycetia with Antimicrobial Potential. Microbiology Spectrum, 11(2), e0348922. https://doi.org/10.1128/spectrum.03489-22
  • McDonnell, A. M., & Dang, C. H. (2013). Basic review of the cytochrome p450 system. J.Adv. Practit. Oncol, 4(4), 263–268. https://doi.org/10.6004/jadpro.2013.4.4.7
  • Mohammad, T., Mathur, Y., & Hassan, M. I. (2021). InstaDock: A single-click graphical user interface for molecular docking-based virtual high-throughput screening. Brief. Bioinformatics., 22(4), bbaa279.
  • Mou, Y., Meng, J., Fu, X., Wang, X., Tian, J., Wang, M., Peng, Y., & Zhou, L. (2013). Antimicrobial and antioxidant activities and effect of 1-hexadecene addition on palmarumycin c2 and C3 yields in liquid culture of endophytic fungus Berkleasmium sp. Dzf12. Molecules (Basel, Switzerland), 18(12), 15587–15599. https://doi.org/10.3390/molecules181215587
  • Mustapha, A., Adamu, U., Gideon, A. S., Paul, A. M., Muhammad, T. I., Iqrar, A., & Harun, P. (2023). Structurebased drug design, molecular dynamics simulation, ADMET, and quantum chemical studies of some thiazolinones targeting influenza neuraminidase. Journal of Biomolecular Structure and Dynamics, 41(23), 13829–13843. https://doi.org/10.1080/07391102.2023.2208225
  • Musthafa, K. S., Balamurugan, K., Pandian, S. K., & Ravi, A. V. (2012). 2,5-Piperazinedione inhibits quorum sensing-dependent factor production in Pseudomonas aeruginosa. Journal of Basic Microbiology, 52(6), 679–686. https://doi.org/10.1002/jobm.201100292
  • Mutocheluh, M., & Williams Narkwa, P. (2022). Aflatoxin B1: An Immunomodulator and Cancer Agent. IntechOpen. https://doi.org/10.5772/intechopen.106833
  • Mysoon, A., Noorah, A., Vijayaragavan, P., & Murugan, K. (2019). Antimicrobial potential of Streptomyces sp. to the gram positive and gram-negative pathogens. Journal of Infection and Public Health, 12(6), 861–866. https://doi.org/10.1016/j.jiph.2019.05.016
  • Nandhini, U. S., SangareshwarI, S., & Kumari, L. (2015). Gas chromatography-mass spectrometry analysis of bioactive constituents from the marine Streptomyces. Asian Journal of Pharmaceutical and Clinical Research. 8(2), 244–246.
  • Narayanamoorthi, V., Vasantha, K., Rency, R. C., & Maruthasalam, A. (2015). GC MS determination of bioactive components of Peperomia pellucida (L.) Kunth. Biosci.Discov, 6(2), 83–88.
  • Nasr, Z., El-Shershaby, H., Sallam, K., Abed, N., Abd- El Ghany, I., & Sidkey, N. (2022). Evaluation of antimicrobial potential of tetradecane extracted from Pediococcusacidilactici DSM: 20284 - CM Isolated from Curd Milk. Egyptian Journal of Chemistry, 0(0), 0–0. https://doi.org/10.21608/ejchem.2021.92658.4385
  • Noumi, E., Ahmad, I., Adnan, M., Merghni, A., Patel, H., Haddaji, N., Bouali, N., Alabbosh, K. F., Ghannay, S., Aouadi, K., Kadri, A., Polito, F., Snoussi, M., & De Feo, V. (2023). GC/MS Profiling, Antibacterial, Anti-Quorum Sensing, and Antibiofilm Properties of Anethum graveolens L. Essential Oil: Molecular Docking Study and In-Silico ADME Profiling. Plants (Basel, Switzerland), 12(10), 1997. https://doi.org/10.3390/plants12101997
  • Omoruyi, B., Afolayan, A., & Bradley, G. (2014). Chemical composition profiling and antifungal activity of the essential oil and plant extracts of Mesembryanthemum edule (L.) bolus leaves. African Journal of Traditional, Complementary, and Alternative Medicines: AJTCAM, 11(4), 19–30. https://doi.org/10.4314/ajtcam.v11i4.4
  • Ouellette, R. J. (2018). Organic Chemistry ǁ Electrophilic aromatic substitution. 375–407. https://doi.org/10.1016/B978-0-12-812838-1.50013-X
  • Owen, A. E., Chima, C. M., Ahmad, I., Emori, W., Agwamba, E. C., Cheng, C. R., Benjamin, I., Patel, H., Ahuekwe, E. F., Ojong, M. A., Ubah, C. B., Manicum, A. L. E., & Louis, H. (2023). Antibacterial potential of trihydroxycyclohexa-2,4-Diene-1-carboxylic acid: Insight from DFT, molecular docking, and molecular dynamic simulation. Polycyclic Aromatic Compounds, 1–24. https://doi.org/10.1080/10406638.2023.2214280
  • Padma, M., Ganesan, S., Jayaseelan, T., Azhagumadhavan, S., Sasikala, P., Senthilkumar, S., & Mani, P. (2019). Phytochemical screening and GC–MS analysis of bioactive compounds present in ethanolic leaves extract of Silybum marianum (L). Journal of Drug Delivery and Therapeutics, 9(1), 85–89. https://doi.org/10.22270/jddt.v9i1.2174
  • Pavlović, N., Goločorbin-Kon, S., Ðanić, M., Stanimirov, B., Al-Salami, H., Stankov, K., & Mikov, M. (2018). Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles. Frontiers in Pharmacology, 9, 1283.https://doi.org/10.3389/fphar.2018.01283
  • Pereira, C. B., Pereira de Sá, N., Borelli, B. M., Rosa, C. A., Barbeira, P. J. S., Cota, B. B., & Johann, S. (2016). Antifungal activity of eicosanoic acids isolated from the endophytic fungusMycosphaerella sp. against Cryptococcus neoformans and C. gattii. Microbial Pathogenesis, 100, 205–212. https://doi.org/10.1016/j.micpath2016.09.022
  • Pickova, D., Ostry, V., Toman, J., & Malir, F. (2021). Aflatoxins: History, significant milestones, recent data on their toxicity and ways to mitigation. Toxins, 13(6), 399. https://doi.org/10.3390/toxins13060399
  • Provenzani, R., San-Martin-Galindo, P., Hassan, G., Legehar, A., Kallio, A., Xhaard, H., Fallarero, A., & Yli-Kauhaluoma, J. (2021). Multisubstituted pyrimidines effectively inhibit bacterial growth and biofilm formation of Staphylococcus aureus. Scientific Reports, 11(1), 7931. https://doi.org/10.1038/s41598-021-86852-5
  • Quinn, G. A., Banat, A. M., Abdelhameed, A. M., & Banat, I. M. (2020). Streptomyces from traditional medicine: Sources of new innovations in antibiotic discovery. Journal of Medical Microbiology, 69(8), 1040–1048. https://doi.org/10.1099/jmm.0.001232
  • Rahimzadeh Barzoki, H., Faraji, H., Beirami, S., Keramati, F. Z., Nayik, G. A., Izadi Yazdanaabadi, Z., & Mozaffari Nejad, A. S. (2023). Seasonal study of aflatoxin M1 contamination in cow milk on the retail dairy market in Gorgan, Iran. Dairy, 4(4), 571–580. https://doi.org/10.3390/dairy4040039
  • Rao, R., Mani, K. V., Satyanarayana, P., & Raghava Rao, T. (2017). Purification and structural elucidation of three bioactive compounds isolated from Streptomyces coelicoflavusBC 01 and their biological activity. 3 Biotech, 7(1), 24. https://doi.org/10.1007/s13205-016-0581-9
  • Rhetso, T., Shubharani, R., Roopa, M. S., & Sivaram, V. (2020). Chemical constituents, antioxidant, and antimicrobial activity of Allium chinense G. Don. Future Journal of Pharmaceutical Sciences, 6(102), 1–9. https://doi.org/10.1186/s43094-020-00100-7
  • Rotjanapan, P., Chen, Y. C., Chakrabarti, A., Li, R. Y., Rudramurthy, S. M., Yu, J., Kung, H. C., Watcharananan, S., Tan, A. L., Saffari, S. E., & Tan, B. H. (2018). Epidemiology and clinical characteristics of invasive mold infections: A multicenter, retrospective analysis in five Asian countries. Medical Mycology, 56(2), 186–196. https://doi.org/10.1093/mmy/myx029
  • Rudramurthy, S. M., Paul, R. A., Chakrabarti, A., Mouton, J. W., & Meis, J. F. (2019). Invasive Aspergillosis by Aspergillus flavus: Epidemiology, diagnosis, antifungal resistance, and management. Journal of Fungi, 5(3), 55. https://doi.org/10.3390/jof5030055
  • Russo, A., Tiseo, G., Falcone, M., & Menichetti, F. (2020). Pulmonary aspergillosis: An evolving challenge for diagnosis and treatment. Infectious Diseases and Therapy, 9(3), 511–524. https://doi.org/10.1007/s40121-020-00315-4.
  • Saleh, N. M., El-Gazzar, M. G., Aly, H. M., & Othman, R. A. (2019). Novel anticancer fused pyrazole derivatives as EGFR and VEGFR-2 Dual TK Inhibitors. Frontiers in Chemistry, 7, 917. https://doi.org/10.3389/fchem.2019.00917
  • Sayed, H. M., Ramadan, M. A., Salem, H. H., Ahmad, I., Patel, H., & Fayed, M. A. (2023). Phytochemical investigation, In Silico/In Vivo analgesic, and anti-inflammatory assessment of the egyptian cassia occidentalis L. Steroids, 196, 109245. https://doi.org/10.1016/j.steroids.2023.109245
  • Schimana, J., Fiedler, H. P., Groth, I., Süssmuth, R., Beil, W., Walker, M., & Zeeck, A. (2000). Simocyclinones, novel cytostatic angucyclinone antibiotics produced by Streptomyces antibioticus Tue 6040. I. taxonomy, fermentation, isolation and biological activities. The Journal of Antibiotics, 53(8), 779–787. https://doi.org/10.7164/antibiotics.53.779
  • Semwal, P., Painuli, S., Himani, B., & Bacheti, R. K. (2018). Screening of phytoconstituents and antibacterial activity of leaves and bark of Quercus leucotrichophora A. Camus from Uttarakhand Himalaya. Clinical Phytoscience, 4(1), 30. https://doi.org/10.1186/s40816-018-0090-y
  • Sharma, A., Rai, P. K., & Prasad, S. (2018). GC–MS detection and determination of major volatile compounds in Brassica juncea L. leaves and seeds. Microchemical Journal. 138, 488–493. https://doi.org/10.1016/j.microc.2018.01.015
  • Shinde, A. D., Nandurkar, Y. M., Bhalekar, S., Walunj, Y. S., Ugale, S., Ahmad, I., Patel, H., Chavan, A. P., & Mhaske, P. C. (2023). Investigation of new 1,2,3-triazolyl-quinolinyl-propan-2-ol derivatives as potential antimicrobial agents: In vitro and in silico approach. Journal of Biomolecular Structure & Dynamics, 30, 1–17. https://doi.org/10.1080/07391102.2023.2217922
  • Singh, P. P., Jaiswal, A. K., Kumar, A., Gupta, V., & Prakash, B. (2021). Untangling the multi-regime molecular mechanism of verbenol-chemotype Zingiber officinale essential oil against Aspergillus flavus and aflatoxin B1. Scientific Reports, 11(1), 6832. https://doi.org/10.1038/s41598-021-86253-8
  • Sisodia, J., & Bajaj, T. (2023). Allergic Bronchopulmonary Aspergillosis. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK542329/
  • Solanki, R., Kundu, A., Das, P., & Khanna, M. (2015). Characterization of antimicrobial compounds from Streptomyces sp. World Journal of Pharmaceutical Research. 4(7), 1626–1641.
  • Somasekhara, D., Dammalli, M., & Nadumane, V. K. (2023). Proteomic analysis of human breast cancer MCF-7 Cells to identify cellular targets of the anticancer pigment OR3 from Streptomyces coelicolor JUACT03. Applied Biochemistry and Biotechnology, 195(1), 236–252. https://doi.org/10.1007/s12010-022-04128-8
  • Souza, E. S., Zaramello, L., Kuhnen, C. A., Junkes, B., Yunes, R. A., & Heinzen, V. E. (2011). Estimating the octanol/water partition coefficient for aliphatic organic compounds using semi-empirical electrotopological index. International Journal of Molecular Sciences, 12(10), 7250–7264. https://doi.org/10.3390/ijms12107250
  • Srinivasan, K., Altemimi, A. B., Narayanaswamy, R., Vasantha Srinivasan, P., Najm, M. A. A., & Mahna, N. (2023). GC-MS, alpha-amylase, and alpha-glucosidase inhibition and molecular docking analysis of selected phytoconstituents of small wild date palm fruit (Phoenix pusilla). Food Science & Nutrition, 11(9), 5304–5317. https://doi.org/10.1002/fsn3.3489
  • Tabti, K., Ahmad, I., Zafar, I., Sbai, A., Maghat, H., Bouachrine, M., & Lakhlifi, T. (2023). Profiling the Structural determinants of pyrrolidine derivative as gelatinases (MMP-2 and MMP-9) inhibitors using in silico approaches. Computational Biology and Chemistry, 104, 107855. https://doi.org/10.1016/j.compbiolchem.2023.107855
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/nar/gky473
  • Ting, W., Chang, C. H., Szonyi, B., & Gizachew, D. (2020). Growth and Aflatoxin B1, B2, G1, and G2 production by Aspergillus flavus and Aspergillus parasiticus on ground flax seeds (Linumusitatissimum). Journal of Food Protection, 83(6), 975–983. https://doi.org/10.4315/JFP-19-539
  • Togashi, N., Shiraishi, A., Nishizaka, M., Matsuoka, K., Endo, K., Hamashima, H., & Inoue, Y. (2007). Antibacterial activity of long-chain fatty alcohols against Staphylococcus aureus. Molecules (Basel, Switzerland), 12(2), 139–148. https://doi.org/10.3390/12020139
  • Ugbogu, E. A., Akubugwo, I. E., Ude, V. C., Gilbert, J., & Ekeanyanwu, B. (2019). Toxicological evaluation of phytochemical characterized aqueous extract of wild dried Lentinus squarrosulus (Mont.) mushroom in rats. Toxicological Research, 35(2), 181–190. https://doi.org/10.5487/tr.2019.35.2.181
  • Varsha, K. K., Devendra, L., Shilpa, G., Priya, S., Pandey, A., & Nampoothiri, K. M. (2015). 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. International Journal of Food Microbiology, 211, 44–50. https://doi.org/10.1016/j.ijfoodmicro.2015.06.025
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modeling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Weinstein, M., Lewis, J., Kraft., & Colleen, S. (2020). The clinical and laboratory standards institute subcommittee on antimicrobial susceptibility testing: Background, organization, functions, and processes. Journal of Clinical Microbiology, 58(3), e01864-19. https://doi.org/10.1128/JCM.01864-19
  • Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255
  • Yu, J., & Pedroso, I. R. (2023). Mycotoxins in cereal-based products and their impacts on the health of humans, livestock animals and pets. Toxins, 15(8), 480. https://doi.org/10.3390/toxins15080480
  • Zala, A. R., Kumar, D., Razakhan, U., Rajani, D. P., Ahmad, I., Patel, H., & Kumari, P. (2023). Molecular modeling and biological investigation of novel s-triazine linked benzothiazole and coumarin hybrids as antimicrobial and antimycobacterial agents. Journal of Biomolecular Structure & Dynamics, 22, 1–12. https://doi.org/10.1080/07391102.2023.2216293
  • Zala, A. R., Naik, H. N., Ahmad, I., Patel, H., Jauhari, S., & Kumari, P. (2023). Design and synthesis of novel 1, 2, 3-triazole linked hybrids: Molecular docking, MD simulation, and their antidiabetic efficacy as α-Amylase inhibitors. Journal of Molecular Structure. 1285, 135493. 135493. https://doi.org/10.1016/j.molstruc.2023.135493
  • Zhao, F., Wang, P., Lucardi, R. D., Su, Z., & Li, S. (2020). Natural sources and bioactivities of 2,4-Di-tert-butylphenol and its analogs. Toxins, 12(1), 35. https://doi.org/10.3390/toxins12010035
  • Zhou, J. Y., Zhao, X. Y., & Dai, C. C. (2014). Antagonistic mechanisms of endophytic pseudomonas fluorescens against Atheliarolfsii. Journal of Applied Microbiology, 117(4), 1144–1158. https://doi.org/10.1111/jam.12586
  • Zote, Joanne, Passari, Ajit Kumar, Siddaiah, Chandra Nayaka, Kumar, Nachimuthu Senthil, Abd_Allah, Elsayed Fathi, Hashem, Abeer, Alqarawi, Abdulaziz A., Malik, Jahangir Ahmad, Singh, Bhim Pratap, Zothanpuia, 2018. Phylogenetic affiliation and determination of bioactive compounds of bacterial population associated with organs of mud crab, Scylla olivacea, Saudi J. Biol. Sci., 8, 1743, 1754, 25 https://doi.org/10.1016/j.sjbs.2018.08.025
  • Zou, N., Zhou, D., Chen, Y., Lin, P., Chen, Y., Wang, W., Xie, J., & Wang, M. (2021). A Novel Antifungal Actinomycete Streptomyces sp. Strain H3-2 Effectively Controls Banana Fusarium Wilt. Frontiers in Microbiology, 12, 706647.https://doi.org/10.3389/fmicb.2021.706647

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.