89
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analysis of SIKVAV’s receptor affinity, pharmacokinetics, and pharmacological characteristics: a matrikine with potent biological function

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 12 Sep 2023, Accepted 27 Jan 2024, Published online: 12 Feb 2024

References

  • Abdulazeez, S. (2019). Molecular simulation studies on B-cell lymphoma/leukaemia 11A (BCL11A). American Journal of Translational Research, 11, 3689–3697.
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Adcock, S. A., & McCammon, J. A. (2006). Molecular dynamics: Survey of methods for simulating the activity of proteins. Chemical Reviews, 106(5), 1589–1615. https://doi.org/10.1021/cr040426m
  • Almiñana, N., Grau-Oliete, M. R., Reig, F., & Rivera-Fillat, M. P. (2004). In vitro effects of SIKVAV retro and retro-enantio analogues on tumor metastatic events. Peptides, 25(2), 251–259. https://doi.org/10.1016/j.peptides.2003.12.016
  • Alonso, C., Carrer, V., Espinosa, S., Zanuy, M., Córdoba, M., Vidal, B., Domínguez, M., Godessart, N., Coderch, L., & Pont, M. (2019). Prediction of the skin permeability of topical drugs using in silico and in vitro models. European Journal of Pharmaceutical Sciences, 136, 104945. https://doi.org/10.1016/j.ejps.2019.05.023
  • Andreuzzi, E., Capuano, A., Poletto, E., Pivetta, E., Fejza, A., Favero, A., Doliana, R., Cannizzaro, R., Spessotto, P., & Mongiat, M. (2020). Role of extracellular matrix in gastrointestinal cancer-associated angiogenesis. International Journal of Molecular Sciences, 21(10), 3686. https://doi.org/10.3390/ijms21103686
  • Arimori, T., Miyazaki, N., Mihara, E., Takizawa, M., Taniguchi, Y., Cabañas, C., Sekiguchi, K., & Takagi, J. (2021). Structural mechanism of laminin recognition by integrin. Nature Communications, 12(1), 4012. https://doi.org/10.1038/s41467-021-24184-8
  • Aronov, A. M. (2005). Predictive in silico modeling for hERG channel blockers, Drug. Drug Discovery Today. 10(2), 149–155. https://doi.org/10.1016/S1359-6446(04)03278-7
  • Aruchamy, M., & Karuppannan, S. (2021). Effect of solvent properties on the growth, morphology, and second harmonic generation ability of 4-aminobenzophenone (ABP) single crystals, Crystal Research and Technology, 56(12), 2000246. https://doi.org/10.1002/crat.202000246
  • Assadollahi, V., Rashidieh, B., Alasvand, M., Abdolahi, A., & Lopez, J. A. (2019). Interaction and molecular dynamics simulation study of Osimertinib (AstraZeneca 9291) anticancer drug with the EGFR kinase domain in native protein and mutated L844V and C797S. Journal of Cellular Biochemistry, 120(8), 13046–13055. https://doi.org/10.1002/jcb.28575
  • Attene-Ramos, M. S., Miller, N., Huang, R., Michael, S., Itkin, M., Kavlock, R. J., Austin, C. P., Shinn, P., Simeonov, A., Tice, R. R., & Xia, M. (2013). The Tox21 robotic platform for the assessment of environmental chemicals – from vision to reality. Drug Discovery Today. 18(15-16), 716–723. https://doi.org/10.1016/j.drudis.2013.05.015
  • Bishop-Bailey, D. (2011). PPARs and angiogenesis. Biochemical Society Transactions, 39(6), 1601–1605. https://doi.org/10.1042/BST20110643
  • Bohnert, T., & Gan, L.-S. (2013). Plasma protein binding: From discovery to development. Journal of Pharmaceutical Sciences, 102(9), 2953–2994. https://doi.org/10.1002/jps.23614
  • Burkin, D. J., & Kaufman, S. J. (1999). The α7β1 integrin in muscle development and disease. Cell and Tissue Research, 296(1), 183–190. https://doi.org/10.1007/s004410051279
  • Capuzzi, S. J., Politi, R., Isayev, O., Farag, S., & Tropsha, A. (2016). QSAR modeling of Tox21 challenge stress response and nuclear receptor signaling toxicity assays. Frontiers in Environmental Science, 4 https://doi.org/10.3389/fenvs.2016.00003.
  • Cardoso Alves, L., Corazza, N., Micheau, O., & Krebs, P. (2021). The multifaceted role of TRAIL signaling in cancer and immunity. The FEBS Journal, 288(19), 5530–5554. https://doi.org/10.1111/febs.15637
  • Chastney, M. R., Conway, J. R. W., & Ivaska, J. (2021). Integrin adhesion complexes. Current Biology, 31(10), R536–R542. https://doi.org/10.1016/j.cub.2021.01.038
  • Cheminform, K. J., & Kenny, P. W. (2019). The nature of ligand efficiency. Journal of Cheminformatics, 11(1), 8. https://doi.org/10.1186/s13321-019-0330-2
  • Chen, S., Zhang, M., Shao, X., Wang, X., Zhang, L., Xu, P., Zhong, W., Zhang, L., Xing, M., & Zhang, L. (2015). A laminin mimetic peptide SIKVAV-conjugated chitosan hydrogel promoting wound healing by enhancing angiogenesis, re-epithelialization and collagen deposition. Journal of Materials Chemistry. B, 3(33), 6798–6804. https://doi.org/10.1039/c5tb00842e
  • Chen, X., Cao, X., Jiang, H., Che, X., Xu, X., Ma, B., Zhang, J., & Huang, T. (2018). SIKVAV-modified chitosan hydrogel as a skin substitutes for wound closure in mice. Molecules (Basel, Switzerland), 23(10), 2611. https://doi.org/10.3390/molecules23102611
  • Chen, X., Fu, W., Cao, X., Jiang, H., Che, X., Xu, X., Ma, B., & Zhang, J. (2018). Peptide SIKVAV-modified chitosan hydrogels promote skin wound healing by accelerating angiogenesis and regulating cytokine secretion. American Journal of Translational Research, 10, 4258–4268. https://pubmed.ncbi.nlm.nih.gov/30662668.
  • Chen, X., Zhang, M., Chen, S., Wang, X., Tian, Z., Chen, Y., Xu, P., Zhang, L., Zhang, L., & Zhang, L. (2017). Peptide-modified chitosan hydrogels accelerate skin wound healing by promoting fibroblast proliferation, migration, and secretion. Cell Transplantation, 26(8), 1331–1340. https://doi.org/10.1177/0963689717721216
  • Chen, Y., Su, Z., & Liu, F. (2021). Effects of functionally diverse calpain system on immune cells. Immunologic Research, 69(1), 8–17. https://doi.org/10.1007/s12026-021-09177-5
  • Cheng, C. Y., Lie, P. P., Mok, K.-W., Cheng, Y.-H., Wong, E. W., Mannu, J., Mathur, P. P., Yan, H. H. N., & Mruk, D. D. (2011). Interactions of laminin β3 fragment with β1-integrin receptor: A revisit of the apical ectoplasmic specialization-blood-testis-barrier-hemidesmosome functional axis in the testis. Spermatogenesis, 1(3), 174–185. https://doi.org/10.4161/spmg.1.3.17076
  • Daina, A., & Zoete, V. (2016). A BOILED-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME : A free web tool to evaluate pharmacokinetics, drug- likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Darko, L. K. S., Broni, E., Amuzu, D. S. Y., Wilson, M. D., Parry, C. S., & Kwofie, S. K. (2021). Computational study on potential novel anti-ebola virus protein VP35 natural compounds. Biomedicines, 9(12), 1796. https://doi.org/10.3390/biomedicines9121796
  • das Chagas Pereira de Andrade, F., & Mendes, A. N. (2020). Computational analysis of eugenol inhibitory activity in lipoxygenase and cyclooxygenase pathways. Scientific Reports, 10(1), 16204. https://doi.org/10.1038/s41598-020-73203-z
  • Davel, L. E., Puricelli, L. I., Del Carmen C Vidal, M., De Lorenzo, M. S., Sacerdote de Lustig, E., & Bal de Kier Joffe, E. D. (1999). Soluble factors from the target organ enhance tumor cell angiogenesis: Role of laminin SIKVAV sequence. Oncology Reports, 6(4), 907–911. https://doi.org/10.3892/or.6.4.907
  • Davis, G. E., Bayless, K. J., Davis, M. J., & Meininger, G. A. (2000). Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. The American Journal of Pathology, 156(5), 1489–1498. https://doi.org/10.1016/S0002-9440(10)65020-1
  • Derkacz, A., Olczyk, P., Olczyk, K., & Komosinska-Vassev, K. (2021). The role of extracellular matrix components in inflammatory bowel diseases. Journal of Clinical Medicine, 10(5), 1122. https://doi.org/10.3390/jcm10051122
  • Dong, J., Wang, N.-N., Yao, Z.-J., Zhang, L., Cheng, Y., Ouyang, D., Lu, A.-P., & Cao, D.-S. (2018). ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. Journal of Cheminformatics, 10(1), 29. https://doi.org/10.1186/s13321-018-0283-x
  • Duan, D., Goemans, N., Takeda, S., Mercuri, E., & Aartsma-Rus, A. (2021). Duchenne muscular dystrophy. Nature Reviews Disease Primers, 7(1), 13. https://doi.org/10.1038/s41572-021-00248-3
  • Eryilmaz, E. (2019). Multi-targeted anti-leukemic drug design with the incorporation of silicon into Nelarabine: How silicon increases bioactivity. European Journal of Pharmaceutical Sciences, 134, 266–273. https://doi.org/10.1016/j.ejps.2019.04.008
  • Farha, A. K., Li, Z., Xu, Y., Bordiga, M., Sui, Z., & Corke, H. (2023). Anti-quorum sensing effects of batatasin III: In vitro and in silico studies. Journal of Biomolecular Structure & Dynamics, 41(20), 11341–11352. https://doi.org/10.1080/07391102.2023.2187226
  • Fishbein, A., Hammock, B. D., Serhan, C. N., & Panigrahy, D. (2021). Carcinogenesis: Failure of resolution of inflammation? Pharmacology & Therapeutics, 218, 107670. https://doi.org/10.1016/j.pharmthera.2020.107670
  • Freitas, V. M., Vilas-Boas, V. F., Pimenta, D. C., Loureiro, V., Juliano, M. A., Carvalho, M. R., Pinheiro, J. J V., Camargo, A. C. M., Moriscot, A. S., Hoffman, M. P., & Jaeger, R. G. (2007). SIKVAV, a laminin alpha1-derived peptide, interacts with integrins and increases protease activity of a human salivary gland adenoid cystic carcinoma cell line through the ERK 1/2 signaling pathway. The American Journal of Pathology, 171(1), 124–138. https://doi.org/10.2353/ajpath.2007.051264
  • Garg, K., Mahmassani, Z. S., Dvoretskiy, S., Valero, M. C., Huntsman, H. D., Lapp, S., Wu, Y.-F., Hauschka, S. D., Burkin, D. J., & Boppart, M. D. (2021). Laminin-111 improves the anabolic response to mechanical load in aged skeletal muscle. The Journals of Gerontology, 76(4), 586–590. https://doi.org/10.1093/gerona/glaa308
  • Gleeson, M. P., Hersey, A., Montanari, D., & Overington, J. (2011). Probing the links between in vitro potency, ADMET and physicochemical parameters. Nature Reviews Drug Discovery, 10(3), 197–208. https://doi.org/10.1038/nrd3367
  • Goddi, A., Schroedl, L., Brey, E. M., & Cohen, R. N. (2021). Laminins in metabolic tissues. Metabolism: Clinical and Experimental, 120, 154775. https://doi.org/10.1016/j.metabol.2021.154775
  • Gramany, V., Khan, F. I., Govender, A., Bisetty, K., Singh, S., & Permaul, K. (2016). Cloning, expression, and molecular dynamics simulations of a xylosidase obtained from Thermomyces lanuginosus. Journal of Biomolecular Structure & Dynamics, 34(8), 1681–1692. https://doi.org/10.1080/07391102.2015.1089186
  • Guengerich, F. P. (2020). Cytochrome P450 2E1 and its roles in disease. Chemico-Biological Interactions, 322, 109056. https://doi.org/10.1016/j.cbi.2020.109056
  • Hejčl, A., Růžička, J., Proks, V., Macková, H., Kubinová, Š., Tukmachev, D., Cihlář, J., Horák, D., & Jendelová, P. (2018). Dynamics of tissue ingrowth in SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores after bridging a spinal cord transection. Journal of Materials Science: Materials in Medicine, 29(7), 89. https://doi.org/10.1007/s10856-018-6100-2
  • Hoque, M. J., Ahsan, A., & Hossain, B. (2018). Molecular docking, pharmacokinetic, and DFT calculation of naproxen and its degradants. Biomedical Journal of Scientific & Technical Research, 9, 7360–7365. https://doi.org/10.26717/bjstr.2018.09.001852
  • Hosseinzadeh, F., Ebrahimi, M., Goliaei, B., & Shamabadi, N. (2012). Classification of lung cancer tumors based on structural and physicochemical properties of proteins by bioinformatics models. PLOS One. 7(7), e40017. https://doi.org/10.1371/journal.pone.0040017
  • Hubbard, R. E., & Haider, M. K. (2010). Hydrogen bonds in proteins: Role and strength. In Encyclopedia of life sciences, https://doi.org/10.1002/9780470015902.a0003011.pub2
  • Ikeshima-Kataoka, H., Sugimoto, C., & Tsubokawa, T. (2022). Integrin signaling in the central nervous system in animals and human brain diseases. International Journal of Molecular Sciences, 23(3), 1435. https://doi.org/10.3390/ijms23031435
  • Iyer, A., Jyothi, V. G. S. S., Agrawal, A., Khatri, D. K., Srivastava, S., Singh, S. B., & Madan, J. (2021). Does skin permeation kinetics influence efficacy of topical dermal drug delivery system?: Assessment, prediction, utilization, and integration of chitosan biomacromolecule for augmenting topical dermal drug delivery in skin. Journal of Advanced Pharmaceutical Technology & Research, 12(4), 345–355. https://doi.org/10.4103/japtr.japtr_82_21
  • Jabbari, P., Sadeghalvad, M., & Rezaei, N. (2021). An inflammatory triangle in Sarcoidosis: PPAR-γ, immune microenvironment, and inflammation. Expert Opinion on Biological Therapy, 21(11), 1451–1459. https://doi.org/10.1080/14712598.2021.1913118
  • Janani, C., & Ranjitha Kumari, B. D. (2015). PPAR gamma gene – A review. Diabetes & Metabolic Syndrome, 9(1), 46–50. https://doi.org/10.1016/j.dsx.2014.09.015
  • Katsila, T., Spyroulias, G. A., Patrinos, G. P., & Matsoukas, M.-T. (2016). Computational approaches in target identification and drug discovery. Computational and Structural Biotechnology Journal, 14, 177–184. https://doi.org/10.1016/j.csbj.2016.04.004
  • Khan, F. I., Shahbaaz, M., Bisetty, K., Waheed, A., Sly, W. S., Ahmad, F., & Hassan, M. I. (2016). Large scale analysis of the mutational landscape in β-glucuronidase: A major player of mucopolysaccharidosis type VII. Gene, 576(1 Pt 1), 36–44. https://doi.org/10.1016/j.gene.2015.09.062
  • Khan, F. I., Wei, D.-Q., Gu, K.-R., Hassan, M. I., & Tabrez, S. (2016). Current updates on computer aided protein modeling and designing. International Journal of Biological Macromolecules, 85, 48–62. https://doi.org/10.1016/j.ijbiomac.2015.12.072
  • Kim, H., & Nam, H. (2020). hERG-Att: Self-attention-based deep neural network for predicting hERG blockers. Computational Biology and Chemistry, 87, 107286. https://doi.org/10.1016/j.compbiolchem.2020.107286
  • Kotlinowski, J., & Jozkowicz, A. (2016). PPAR gamma and angiogenesis: Endothelial cells perspective. Journal of Diabetes Research, 2016, 8492353–8492311. https://doi.org/10.1155/2016/8492353
  • Kumari, R., Kumar, R., & Lynn, A. (2014). Lynn, g_mmpbsa—A GROMACS Tool for High-Throughput MM-PBSA Calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lee, C.-S., Kwon, Y.-W., Yang, H.-M., Kim, S.-H., Kim, T.-Y., Hur, J., Park, K.-W., Cho, H.-J., Kang, H.-J., Park, Y.-B., & Kim, H.-S. (2009). New mechanism of rosiglitazone to reduce neointimal hyperplasia. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(4), 472–479. https://doi.org/10.1161/ATVBAHA.108.176230
  • Lindholm, M., Di Sabatino, A., Manon-Jensen, T., Mazza, G., Madsen, G. I., Giuffrida, P., Pinzani, M., Krag, A., Karsdal, M. A., Kjeldsen, J., & Mortensen, J. H. (2021). A serological biomarker of laminin gamma 1 chain degradation reflects altered basement membrane remodeling in crohn’s disease and DSS colitis. Digestive Diseases and Sciences, 67(8), 3662–3671. https://doi.org/10.1007/s10620-021-07252-3
  • Liu, J., Burkin, D. J., & Kaufman, S. J. (2008). Increasing α7β1-integrin promotes muscle cell proliferation, adhesion, and resistance to apoptosis without changing gene expression. American Journal of Physiology, 294(2), C627–C640. https://doi.org/10.1152/ajpcell.00329.2007
  • Liu, J., Milner, D. J., Boppart, M. D., Ross, R. S., & Kaufman, S. J. (2012). β1D chain increases α7β1 integrin and laminin and protects against sarcolemmal damage in mdx mice. Human Molecular Genetics, 21(7), 1592–1603. https://doi.org/10.1093/hmg/ddr596
  • Liu, M.-Q., Li, J.-Y., Rehman, A. U., Xu, X., Gu, Z.-J., & Wu, R.-C. (2019). Laboratory Evolution of GH11 endoxylanase through DNA shuffling: Effects of distal residue substitution on catalytic activity and active site architecture. Frontiers in Bioengineering and Biotechnology, 7, 350. https://doi.org/10.3389/fbioe.2019.00350
  • Mahnashi, M. H., El-Senduny, F. F., Alshahrani, M. A., & Abou-Salim, M. A. (2022). Design, synthesis, and biological evaluation of a novel VEGFR-2 inhibitor based on a 1,2,5-oxadiazole-2-oxide scaffold with MAPK signaling pathway inhibition. Pharmaceuticals, 15(2), 246. https://doi.org/10.3390/ph15020246
  • Malde, A. K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P. C., Oostenbrink, C., & Mark, A. E. (2011). An automated force field topology builder (ATB) and repository: Version 1.0. Journal of Chemical Theory and Computation, 7(12), 4026–4037. https://doi.org/10.1021/ct200196m
  • Matsumoto, T., Kaifuchi, N., Mizuhara, Y., Warabi, E., & Watanabe, J. (2018). Use of a Caco-2 permeability assay to evaluate the effects of several Kampo medicines on the drug transporter P-glycoprotein. Journal of Natural Medicines, 72(4), 897–904. https://doi.org/10.1007/s11418-018-1222-x
  • McClure, M. J., Clark, N. M., Hyzy, S. L., Chalfant, C. E., Olivares-Navarrete, R., Boyan, B. D., & Schwartz, Z. (2016). Role of integrin α7β1 signaling in myoblast differentiation on aligned polydioxanone scaffolds. Acta Biomaterialia, 39, 44–54. https://doi.org/10.1016/j.actbio.2016.04.046
  • McDougall, J. J., McConnell, M., & Reid, A. R. (2021). Intracellular versus extracellular inhibition of calpain I causes differential effects on pain in a rat model of joint inflammation. Molecular Pain, 17, 17448069211016141. 17448069211016140. https://doi.org/10.1177/17448069211016141
  • Meizlish, M. L., Franklin, R. A., Zhou, X., & Medzhitov, R. (2021). Tissue homeostasis and inflammation. Annual Review of Immunology, 39(1), 557–581. https://doi.org/10.1146/annurev-immunol-061020-053734
  • Mezu-Ndubuisi, O. J., & Maheshwari, A. (2021). The role of integrins in inflammation and angiogenesis. Pediatric Research, 89(7), 1619–1626. https://doi.org/10.1038/s41390-020-01177-9
  • Minerali, E., Foil, D. H., Zorn, K. M., Lane, T. R., & Ekins, S. (2020). Comparing machine learning algorithms for predicting drug-induced liver injury (DILI). Molecular Pharmaceutics, 17(7), 2628–2637. https://doi.org/10.1021/acs.molpharmaceut.0c00326
  • Mukaiyama, M., Yamasaki, Y., Usui, T., & Nagumo, Y. (2019). Transient receptor potential V4 channel stimulation induces reversible epithelial cell permeability in MDCK cell monolayers. FEBS Letters, 593(16), 2250–2260. https://doi.org/10.1002/1873-3468.13490
  • Mulliner, D., Schmidt, F., Stolte, M., Spirkl, H.-P., Czich, A., & Amberg, A. (2016). Computational models for human and animal hepatotoxicity with a global application scope. Chemical Research in Toxicology, 29(5), 757–767. https://doi.org/10.1021/acs.chemrestox.5b00465
  • Mumit, M. A., Pal, T. K., Alam, M. A., Islam, M. A.-A.-A.-A., Paul, S., & Sheikh, M. C. (2020). DFT studies on vibrational and electronic spectra, HOMOeLUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3-N-(2,4,5 trimethoxyphenylmethylen)hydrazinecarbodithioate. Journal of Molecular Structure, 1220, 128715. https://doi.org/10.1016/j.molstruc.2020.128715
  • Okoli, B. J., Ladan, Z., Mtunzi, F., & Hosea, Y. C. (2021). Vitex negundo L. essential oil: Odorant binding protein efficiency using molecular docking approach and studies of the mosquito repellent. Insects, 12(12), 1061. https://doi.org/10.3390/insects12121061
  • Orbán-Németh, Z., Beveridge, R., Hollenstein, D. M., Rampler, E., Stranzl, T., Hudecz, O., Doblmann, J., Schlögelhofer, P., & Mechtler, K. (2018). Reply to ‘defining distance restraints in HADDOCK. Nature Protocols, 13(7), 1503–1505. https://doi.org/10.1038/s41596-018-0018-5
  • Pan, F., Li, J., Zhao, L., Tuersuntuoheti, T., Mehmood, A., Zhou, N., Hao, S., Wang, C., Guo, Y., & Lin, W. (2021). A molecular docking and molecular dynamics simulation study on the interaction between cyanidin-3-O-glucoside and major proteins in cow’s milk. Journal of Food Biochemistry, 45(1), e13570. https://doi.org/10.1111/jfbc.13570
  • Pang, X., Zhou, L., Zhang, L., Xu, L., & Zhang, X. (2008). Two rules on the protein-ligand interaction. Nature Precedings, https://doi.org/10.1038/npre.2008.2728.1
  • Panigrahy, D., Huang, S., Kieran, M. W., & Kaipainen, A. (2005). PPARγ as a therapeutic target for tumor angiogenesis and metastasis. Cancer Biology & Therapy, 4(7), 687–693. https://doi.org/10.4161/cbt.4.7.2014
  • Papp, E., Jelenfi, D. P., Veszeli, M. T., & Vattay, G. (2019). A landauer formula for bioelectronic applications. Biomolecules, 9(10), 599. https://doi.org/10.3390/biom9100599
  • Parfett, C. L., & Desaulniers, D. (2017). A Tox21 approach to altered epigenetic landscapes: Assessing epigenetic toxicity pathways leading to altered gene expression and oncogenic transformation in vitro. International Journal of Molecular Sciences, 18(6), 1179. https://doi.org/10.3390/ijms18061179
  • Qu, W., Crizer, D. M., DeVito, M. J., Waidyanatha, S., Xia, M., Houck, K., & Ferguson, S. S. (2021). Exploration of xenobiotic metabolism within cell lines used for Tox21 chemical screening. Toxicology in Vitro, 73, 105109. https://doi.org/10.1016/j.tiv.2021.105109
  • Rahman, M. M., Rahaman, M. S., Islam, M. R., Rahman, F., Mithi, F. M., Alqahtani, T., Almikhlafi, M. A., Alghamdi, S. Q., Alruwaili, A. S., Hossain, M. S., Ahmed, M., Das, R., Bin Emran, T., & Uddin, M. S. (2021). Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules, 27(1), 233. https://doi.org/10.3390/molecules27010233
  • Ramovs, V., Krotenberg Garcia, A., Kreft, M., & Sonnenberg, A. (2021). Integrin α3β1 Is a key regulator of several protumorigenic pathways during skin carcinogenesis. The Journal of Investigative Dermatology, 141(4), 732–741.e6. https://doi.org/10.1016/j.jid.2020.07.024
  • Ricard-Blum, S., & Salza, R. (2014). Matricryptins and matrikines: Biologically active fragments of the extracellular matrix. Experimental Dermatology, 23(7), 457–463. https://doi.org/10.1111/exd.12435
  • Rooney, J. E., Gurpur, P. B., Yablonka-Reuveni, Z., & Burkin, D. J. (2009). Laminin-111 restores regenerative capacity in a mouse model for alpha7 integrin congenital myopathy. The American Journal of Pathology, 174(1), 256–264. https://doi.org/10.2353/ajpath.2009.080522
  • Rooney, J. E., Knapp, J. R., Hodges, B. L., Wuebbles, R. D., & Burkin, D. J. (2012). Laminin-111 protein therapy reduces muscle pathology and improves viability of a mouse model of merosin-deficient congenital muscular dystrophy. The American Journal of Pathology, 180(4), 1593–1602. https://doi.org/10.1016/j.ajpath.2011.12.019
  • Rose, G. D. (2019). Ramachandran maps for side chains in globular proteins. Proteins, 87(5), 357–364. https://doi.org/10.1002/prot.25656
  • Ruslan, M. (2021). The spectrum of inflammatory responses. Science, 374, 1070–1075. https://doi.org/10.1126/science.abi5200
  • Sapir, L., & Harries, D. (2017). Revisiting hydrogen bond thermodynamics in molecular simulations. Journal of Chemical Theory and Computation, 13(6), 2851–2857. https://doi.org/10.1021/acs.jctc.7b00238
  • Sargsyan, K., Grauffel, C., & Lim, C. (2017). How molecular size impacts RMSD applications in molecular dynamics simulations. Journal of Chemical Theory and Computation, 13(4), 1518–1524. https://doi.org/10.1021/acs.jctc.7b00028
  • Schenk, S., & Quaranta, V. (2003). Tales from the crypt[ic] sites of the extracellular matrix. Trends in Cell Biology, 13(7), 366–375. https://doi.org/10.1016/S0962-8924(03)00129-6
  • Schnittert, J., Bansal, R., Storm, G., & Prakash, J. (2018). Integrins in wound healing, fibrosis and tumor stroma: High potential targets for therapeutics and drug delivery. Advanced Drug Delivery Reviews, 129, 37–53. https://doi.org/10.1016/j.addr.2018.01.020
  • Shah, D., Guo, Y., Ocando, J., & Shao, J. (2019). FITC labeling of human insulin and transport of FITC-insulin conjugates through MDCK cell monolayer. Journal of Pharmaceutical Analysis, 9(6), 400–405. https://doi.org/10.1016/j.jpha.2019.08.002
  • Slack, R. J., Macdonald, S. J. F., Roper, J. A., Jenkins, R. G., & Hatley, R. J. D. (2022). Emerging therapeutic opportunities for integrin inhibitors. Nature Reviews. Drug Discovery, 21(1), 60–78. https://doi.org/10.1038/s41573-021-00284-4
  • Sobolev, O. V., Afonine, P. V., Moriarty, N. W., Hekkelman, M. L., Joosten, R. P., Perrakis, A., & Adams, P. D. (2020). A global ramachandran score identifies protein structures with unlikely stereochemistry. Structure, 28(11), 1249–1258.e2. https://doi.org/10.1016/j.str.2020.08.005
  • Stefaniak, F. (2015). Prediction of compounds activity in nuclear receptor signaling and stress pathway assays using machine learning algorithms and low-dimensional molecular descriptors. Frontiers in Environmental Science, 3. https://doi.org/10.3389/fenvs.2015.00077
  • Stevenson, M., Hale, A. B. H., Hale, S. J., Green, N. K., Black, G., Fisher, K. D., Ulbrich, K., Fabra, A., & Seymour, L. W. (2007). Incorporation of a laminin-derived peptide (SIKVAV) on polymer-modified adenovirus permits tumor-specific targeting via α6-integrins. Cancer Gene Therapy, 14(4), 335–345. https://doi.org/10.1038/sj.cgt.7701022
  • St-Pierre, Y., Couillard, J., & Van Themsche, C. (2004). Regulation of MMP-9 gene expression for the development of novel molecular targets against cancer and inflammatory diseases. Expert Opinion on Therapeutic Targets, 8(5), 473–489. https://doi.org/10.1517/14728222.8.5.473
  • Sudeep, H. V., Gouthamchandra, K., & Shyamprasad, K. (2020). Molecular docking analysis of Withaferin A from Withania somnifera with the glucose regulated protein 78 (GRP78) receptor and the SARS-CoV-2 main protease. Bioinformation, 16(5), 411–417. https://doi.org/10.6026/97320630016411
  • Sweeney, T. M., Kibbey, M. C., Zain, M., Fridman, R., & Kleinman, H. K. (1991). Basement membrane and the SIKVAV laminin-derived peptide promote tumor growth and metastases. Cancer Metastasis Reviews, 10(3), 245–254. https://doi.org/10.1007/BF00050795
  • Ta, G. H., Jhang, C.-S., Weng, C.-F., & Leong, M. K. (2021). Development of a hierarchical support vector regression-based in silico model for Caco-2 permeability. Pharmaceutics, 13(2), 174. https://doi.org/10.3390/pharmaceutics13020174
  • Takizawa, M., Arimori, T., Taniguchi, Y., Kitago, Y., Yamashita, E., Takagi, J., & Sekiguchi, K. (2017). Mechanistic basis for the recognition of laminin-511 by α6β1 integrin. Science Advances, 3(9), e1701497. https://doi.org/10.1126/sciadv.1701497
  • Tanwar, G., Mazumder, A. G., Bhardwaj, V., Kumari, S., Bharti, R., Singh, D., Das, P., Purohit, R., Yamini, Target identification, screening and in vivo evaluation of pyrrolone-fused benzosuberene compounds against human epilepsy using Zebrafish model of pentylenetetrazol-induced seizures,Scientific Reports, 9 (2019) 7904. https://doi.org/10.1038/s41598-019-44264-6
  • Taschauer, A., Polzer, W., Alioglu, F., Billerhart, M., Decker, S., Kittelmann, T., Geppl, E., Elmenofi, S., Zehl, M., Urban, E., Sami, H., & Ogris, M. (2019). Peptide-targeted polyplexes for aerosol-mediated gene delivery to CD49f-overexpressing tumor lesions in lung. Molecular Therapy. Nucleic Acids, 18, 774–786. https://doi.org/10.1016/j.omtn.2019.10.009
  • Tian, S., Wang, J., Li, Y., Li, D., Xu, L., & Hou, T. (2015). The application of in silico drug-likeness predictions in pharmaceutical research. Advanced Drug Delivery Reviews, 86, 2–10. https://doi.org/10.1016/j.addr.2015.01.009
  • Trainor, G. L. (2007). The importance of plasma protein binding in drug discovery, Expert. Expert Opinion on Drug Discovery, 2(1), 51–64. https://doi.org/10.1517/17460441.2.1.51
  • Ursu, O., Rayan, A., Goldblum, A., & Oprea, T. I. (2011). Understanding drug-likeness, WIREs comput. WIREs Computational Molecular Science, 1(5), 760–781. https://doi.org/10.1002/wcms.52
  • Vangone, A., Rodrigues, J., Xue, L. C., van Zundert, G. C. P., Geng, C., Kurkcuoglu, Z., Nellen, M., Narasimhan, S., Karaca, E., van Dijk, M., Melquiond, A. S. J., Visscher, K. M., Trellet, M., Kastritis, P. L., & Bonvin, A. M. J. J. (2017). Sense and simplicity in HADDOCK scoring: Lessons from CASP-CAPRI round 1. Proteins, 85(3), 417–423. https://doi.org/10.1002/prot.25198
  • Vanommeslaeghe, K., Guvench, O., & MacKerell, A. D. (2014). Molecular mechanics. Current Pharmaceutical Design, 20(20), 3281–3292. https://doi.org/10.2174/13816128113199990600
  • Viana Nunes, A. M., das Chagas Pereira de Andrade, F., Filgueiras, L. A., de Carvalho Maia, O. A., Cunha, R. L. O. R., Rodezno, S. V. A., Maia Filho, A. L. M., de Amorim Carvalho, F. A., Braz, D. C., & Mendes, A. N. (2020). preADMET analysis and clinical aspects of dogs treated with the Organotellurium compound RF07: A possible control for canine visceral leishmaniasis? Environmental Toxicology and Pharmacology, 80, 103470. https://doi.org/10.1016/j.etap.2020.103470
  • Walters, W. P., & Murcko, M. A. (2002). Prediction of ‘drug-likeness. Advanced Drug Delivery Reviews, 54(3), 255–271. https://doi.org/10.1016/S0169-409X(02)00003-0
  • Wu, J., Guan, X., Dai, Z., He, R., Ding, X., Yang, L., & Ge, G. (2021). Molecular probes for human cytochrome P450 enzymes: Recent progress and future perspectives. Coordination Chemistry Reviews. 427, 213600. https://doi.org/10.1016/j.ccr.2020.213600
  • Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255
  • Xu, J., Cao, K., Liu, X., Zhao, L., Feng, Z., & Liu, J. (2021). Punicalagin regulates signaling pathways in inflammation-associated chronic diseases. Antioxidants, 11(1), 29. https://doi.org/10.3390/antiox11010029
  • Xu, Y., Dai, Z., Chen, F., Gao, S., Pei, J., & Lai, L. (2015). Deep learning for drug-induced liver injury. Journal of Chemical Information and Modeling, 55(10), 2085–2093. https://doi.org/10.1021/acs.jcim.5b00238
  • Yamamura, K., Kibbey, M. C., & Kleinman, H. K. (1993). Melanoma cells selected for adhesion to laminin peptides have different malignant properties. Cancer Research, 53, 423–428.
  • Yamashita, S., Furubayashi, T., Kataoka, M., Sakane, T., Sezaki, H., & Tokuda, H. (2000). Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. European Journal of Pharmaceutical Sciences, 10(3), 195–204. https://doi.org/10.1016/S0928-0987(00)00076-2
  • Yao, Y., Norris, E. H., Mason, C. E., & Strickland, S. (2016). Laminin regulates PDGFRβ+ cell stemness and muscle development. Nature Communications, 7(1), 11415. https://doi.org/10.1038/ncomms11415
  • Yazlovitskaya, E. M., Plosa, E., Bock, F., Viquez, O. M., Mernaugh, G., Gewin, L. S., De Arcangelis, A., Georges-Labouesse, E., Sonnenberg, A., Blackwell, T. S., Pozzi, A., & Zent, R. (2021). The laminin-binding integrins regulate nuclear factor κB-dependent epithelial cell polarity and inflammation. Journal of Cell Science, 134(24), jcs259161. https://doi.org/10.1242/jcs.259161
  • Yazlovitskaya, E. M., Viquez, O. M., Tu, T., De Arcangelis, A., Georges-Labouesse, E., Sonnenberg, A., Pozzi, A., & Zent, R. (2019). The laminin binding α3 and α6 integrins cooperate to promote epithelial cell adhesion and growth. Matrix Biology, 77, 101–116. https://doi.org/10.1016/j.matbio.2018.08.010
  • Yee, S. (1997). In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man–fact or myth. Pharmaceutical Research, 14(6), 763–766. https://doi.org/10.1023/a:1012102522787
  • Zahra, R., Furqan, M., Ullah, R., Mithani, A., Saleem, R. S. Z., & Faisal, A. (2020). A cell-based high-throughput screen identifies inhibitors that overcome P-glycoprotein (Pgp)-mediated multidrug resistance. PLOS One. 15(6), e0233993. https://doi.org/10.1371/journal.pone.0233993
  • Zhang, Y. P., & Zou, Q. (2020). PPTPP: A novel therapeutic peptide prediction method using physicochemical property encoding and adaptive feature representation learning. Bioinformatics (Oxford, England), 36(13), 3982–3987. https://doi.org/10.1093/bioinformatics/btaa275
  • Zhao, Y., Zheng, X., Zheng, Y., Chen, Y., Fei, W., Wang, F., & Zheng, C. (2021). Extracellular matrix: Emerging roles and potential therapeutic targets for breast cancer. Frontiers in Oncology, 11, 650453. https://doi.org/10.3389/fonc.2021.650453

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.