52
Views
0
CrossRef citations to date
0
Altmetric
Research Article

CarSitePred: an integrated algorithm for identifying carbonylated sites based on KNDUA-LNDOT resampling technique

, , , &
Received 25 Oct 2023, Accepted 27 Jan 2024, Published online: 09 Feb 2024

References

  • Abouleila, Y., Onidani, K., Ali, A., Shoji, H., Kawai, T., Lim, C. T., Kumar, V., Okaya, S., Kato, K., Hiyama, E., Yanagida, T., Masujima, T., Shimizu, Y., & Honda, K. (2019). Live single cell mass spectrometry reveals cancer-specific metabolic profiles of circulating tumor cells. Cancer Science, 110(2), 697–706. https://doi.org/10.1111/cas.13915
  • Adedoja, A., Owolawi, P. A., & Mapayi, T. (2019). Deep Learning Based on NASNet for Plant Disease Recognition Using Leave Images. IEEE Supported. 2019 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD) IEEE, https://doi.org/10.1109/ICABCD.2019.8851029
  • Bizzozero, O. A., DeJesus, G., Callahan, K., & Pastuszyn, A. (2005). Elevated protein carbonylation in the brain white matter and gray matter of patients with multiple sclerosis. Journal of Neuroscience Research, 81(5), 687–695. https://doi.org/10.1002/jnr.20587
  • Chen, L., Jing, X.-Y., Hao, Y., Liu, W., Zhu, X., & Han, W. (2023). A novel two‑way rebalancing strategy for identifying carbonylation sites. BMC Bioinformatics, 24(1), 429. https://doi.org/10.1186/s12859-023-05551-2
  • Chen, Z., Liu, X., Li, F., Li, C., Marquez-Lago, T., Leier, A., Akutsu, T., Webb, G. I., Xu, D., Smith, A. I., Li, L., Chou, K.-C., & Song, J. (2018). Large-scale comparative assessment of computational predictors for lysine post-translational modification sites. Briefings in Bioinformatics, 20(6), 2267–2290. https://doi.org/10.1093/bib/bby089
  • Davis, J. H., Tan, Y. Z., Carragher, B., Potter, C. S., Lyumkis, D., & Williamson, J. R. (2016). Modular Assembly of the Bacterial Large Ribosomal Subunit. Cell, 167(6), 1610–1622.e15. https://doi.org/10.1016/j.cell.2016.11.020
  • Gao, H., Sun, J., Wang, Y., Lu, Y., Liu, L., Zhao, Q., & Shuai, J. (2023). Predicting metabolite- disease associations based on auto-encoder and non-negative matrix factorization. Brief Bioinform, 24(5), bbad259.
  • Guo, Y., Zhou, D., Li, P., Li, C., & Cao, J. (2022). Context-Aware Poly(A) Signal Prediction Model via Deep Spati2022 PP, 1–13. https://doi.org/10.1109/TNNLS.2022.3226301
  • Guo, Y., Zhou, D., Ruan, X., & Cao, J. (2023). Variational gated autoencoder-based feature extraction model for inferring disease-miRNA associations based on multiview features. Neural Networks, 165, 491–505. https://doi.org/10.1016/j.neunet.2023.05.052
  • Hasan, M. A. M., Li, J., Ahmad, S., & Molla, M. K. I. (2017). predCar-site: Carbonylation sites prediction in proteins using support vector machine with resolving data imbalanced issue. Analytical Biochemistry, 525, 107–113. https://doi.org/10.1016/j.ab.2017.03.008
  • Hu, H., Feng, Z., Lin, H., Cheng, J., Lyu, J., Zhang, Y., Zhao, J., Xu, F., Lin, T., Zhao, Q., & Shuai, J. (2023). Gene function and cell surface protein association analysis based on single-cell multiomics data. Computers in Biology and Medicine, 157, 106733. https://doi.org/10.1016/j.compbiomed.2023.106733
  • Huang, Q., Chang, J., Cheung, M. K., Nong, W., Li, L., Lee, M.-T., & Kwan, H. S. (2014). Human proteins with target sites of multiple post-translational modification types are more prone to be involved in disease. Journal of Proteome Research, 13(6), 2735–2748. https://doi.org/10.1021/pr401019d
  • Huang, Y., Niu, B., Gao, Y., Fu, L., & Li, W. (2010). CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics, 26(5), 680–682. https://doi.org/10.1093/bioinformatics/btq003
  • Jia, C. Z., Zuo, Y., & Zou, Q. (2018). O-GlcNAcPRED-II: An integrated classification algorithm for identifying O-GlcNAcylation sites based on fuzzy undersampling and K-means PCA oversampling technique. Bioinformatics, 34(12), 2029–2036. https://doi.org/10.1093/bioinformatics/bty039
  • Jia, J., Liu, Z., Xiao, X., Liu, B., & Chou, K.-C. (2016). iCar-PseCp: Identify carbonylation sites in proteins by Monte Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget, 7(23), 34558–34570. https://doi.org/10.18632/oncotarget.9148
  • Johnson, E. C. B., Dammer, E. B., Duong, D. M., Ping, L., Zhou, M., Yin, L., Higginbotham, L. A., Guajardo, A., White, B., Troncoso, J. C., Thambisetty, M., Montine, T. J., Lee, E. B., Trojanowski, J. Q., Beach, T. G., Reiman, E. M., Haroutunian, V., Wang, M., Schadt, E., … Seyfried, N. T. (2020). Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nature Medicine, 26(5), 769–780. https://doi.org/10.1038/s41591-020-0815-6
  • Kao, H. J., Weng, S. L., Huang, K. Y., Kaunang, F. J., Hsu, J. B. K.,Huang, C. H., & Lee, T. Y. (2017). MDD-carb: A combinatorial model for the identification of protein carbonylation sites with substrate motifs. BMC Systems Biology. 11(Suppl 7), 137.
  • Kar, A. (2023). International Conference on Practical Applications of Computational Biology & Bioinformatics Springer, Towards Improving Bio-Image Segmentation Quality Through Ensemble Post-processing of Deep Learning and Classical 3D Segmentation Pipelines. 276–284.
  • Korolainen, M. A., Auriola, S., Nyman, T. A., Alafuzoff, I., & Pirttilä, T. (2005). Proteomic analysis of glial fibrillary acidic protein in Alzheimer’s disease and aging brain. Neurobiology of Disease, 20(3), 858–870. https://doi.org/10.1016/j.nbd.2005.05.021
  • Li, W. H., Guo, Y. B., Wang, B. Y., & Yang, B. (2023). Learning spatiotemporal embedding with gated convolutional recurrent networks for translation initiation site prediction. Pattern Recognition, 136, 109234. https://doi.org/10.1016/j.patcog.2022.109234
  • Lv, H. Q., Liu, J., Han, J. Q., Zheng, J. G., & Liu, R. L. (2016). A computational method to predict carbonylation sites in yeast proteins. Genetics and Molecular Research, 15(2), gmr.15028006. https://doi.org/10.4238/gmr.15028006
  • Lv, H., Han, J., Liu, J., Zheng, J., Liu, R., & Zhong, D. (2014). CarSPred: A computational tool for predicting carbonylation sites of human proteins. PloS One, 9(10), e111478. https://doi.org/10.1371/journal.pone.0111478
  • Maisonneuve, E., Ducret, A., Khoueiry, P., Lignon, S., Longhi, S., Talla, E., & Dukan, S. (2009). Rules Governing Selective Protein Carbonylation. PloS One, 4(10), e7269. https://doi.org/10.1371/journal.pone.0007269
  • Meng, R., Yin, S., Sun, J., Hu, H., & Zhao, Q. (2023). scAAGA: Single cell data analysis framework using asymmetric autoencoder with gene attention. Computers in Biology and Medicine, 165, 107414. https://doi.org/10.1016/j.compbiomed.2023.107414
  • Muntané, G., Dalfó, E., Martínez, A., Rey, M. J., Avila, J., Pérez, M., Portero, M., Pamplona, R., Ayala, V., & Ferrer, I. (2010). Glial fibrillary acidic protein is a major target of glycoxidative and lipoxidative damage in Pick’s disease. Journal of Neurochemistry, 99(1), 177–185. https://doi.org/10.1111/j.1471-4159.2006.04032.x
  • Nabeshi, H., Oikawa, S., Inoue, S., Nishino, K., & Kawanishi, S. (2006). Proteomic analysis for protein carbonyl as an indicator of oxidative damage in senescence-accelerated mice. Free Radical Research, 40(11), 1173–1181. https://doi.org/10.1080/10715760600847580
  • O'Shea, J. P., Chou, M. F., Quader, S. A., Ryan, J. K., Church, G. M., & Schwartz, D. (2013). pLogo: A probabilistic approach to visualizing sequence motifs. Nature Methods, 10(12), 1211–1212. https://doi.org/10.1038/nmeth.2646
  • Pietzner, M. (2023). Mapping the proteo-genomic convergence of human disease. Sichuan Journal of Physiological Sciences, 45(8), 1466–1466.
  • Rao, R. S. P., Zhang, N., Xu, D., & Møller, I. M. (2018). CarbonylDB: A curated data-resource of protein carbonylation sites. Bioinformatics, 34(14), 2518–2520. https://doi.org/10.1093/bioinformatics/bty123
  • Shah, H. A., Liu, J., Yang, Z., Yang, Z.H., Yang, F., Zhang, Q., & Feng, J. (2023). DeepRT: Predicting compounds presence in pathway modules and classifying into module classes using deep neural networks based on molecular properties. J Bioinf Comput Biol, 21(4), 1-7. https://doi.org/10.1142/S0219720023500178.
  • Sun, F., Sun, J., & Zhao, Q. (2022). A deep learning method for predicting metabolite-disease associations via graph neural network. Brief Bioinform, 23(4), bbac266.
  • Wang, T., Sun, J., & Zhao, Q. (2023). Investigating cardiotoxicity related with hERG channel blockers using molecular fingerprints and graph attention mechanism. Computers in Biology and Medicine, 153, 106464. https://doi.org/10.1016/j.compbiomed.2022.106464
  • Wang, W., Zhang, L., Sun, J., Zhao, Q., & Shuai, J.W. (2022). Predicting the potential human lncRNA-miRNA interactions based on graph convolution network with conditional random field. Brief Bioinform, 23(6), bbac463.
  • Weng, S.-L., Huang, K.-Y., Kaunang, F. J., Huang, C.-H., Kao, H.-J., Chang, T.-H., Wang, H.-Y., Lu, J.-J., & Lee, T.-Y. (2017). Investigation and identification of protein carbonylation sites based on position-specific amino acid composition and physicochemical features. BMC Bioinformatics, 18(Suppl 3), 66. https://doi.org/10.1186/s12859-017-1472-8
  • Wright, J., Ganesh, A., Zhou, Z., Wagner, A., & Yi, M. (2008). Demo: Robust face recognition via sparse representation. Ieee F.G, 1-2, 942–943.
  • Xu, Y., Wang, X., Wang, Y., Tian, Y., Shao, X., Wu, L.-Y., & Deng, N. (2014). Prediction of posttranslational modification sites from amino acid sequences with kernel methods. Journal of Theoretical Biology, 344, 78–87. https://doi.org/10.1016/j.jtbi.2013.11.012
  • Yang, S., Zhou, D., Cao, J., & Guo, Y. (2022). Rethinking Low-Light Enhancement via Transformer-GAN. IEEE Signal Processing Letters, 29, 1082–1086. https://doi.org/10.1109/LSP.2022.3167331
  • Yang, S., Zhou, D., Cao, J., & Guo, Y. (2023). LightingNet: An Integrated Learning Method for Low-Light Image Enhancement. IEEE Transactions on Computational Imaging, 9, 29–42. https://doi.org/10.1109/TCI.2023.3240087
  • Zheng, J., & Bizzozero, O. A. (2010). Traditional reactive carbonyl scavengers do not prevent the carbonylation of brain proteins induced by acute glutathione depletion. Free Radical Research, 44(3), 258–266. https://doi.org/10.3109/10715760903456092
  • Zuo, Y., & Jia, C. Z. (2017). CarSite: Identifying carbonylated sites of human proteins based on a one-sided selection resampling method. Molecular bioSystems, 13(11), 2362–2369. https://doi.org/10.1039/c7mb00363c
  • Zuo, Y., Lin, J. Y., Zeng, X. X., Zou*, Q., & Liu*, X. R. (2021). CarSite-II: An integrated classification algorithm for identifying carbonylated sites based on K-means similarity-based undersampling and synthetic minority oversampling techniques. BMC Bioinformatics, 22(1), 216. https://doi.org/10.1186/s12859-021-04134-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.