130
Views
0
CrossRef citations to date
0
Altmetric
Research Article

EIF4A3 targeted therapeutic intervention in glioblastoma multiforme using phytochemicals from Indian medicinal plants – an integration of phytotherapy into precision onco-medicine

, , , &
Received 16 Nov 2023, Accepted 28 Jan 2024, Published online: 12 Feb 2024

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Adams, L. S., Phung, S., Yee, N., Seeram, N. P., Li, L., & Chen, S. (2010). Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway. Cancer Research, 70(9), 3594–3605. https://doi.org/10.1158/0008-5472.CAN-09-3565
  • Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), W530–W534. https://doi.org/10.1093/nar/gkab294
  • Alland, C., Moreews, F., Boens, D., Carpentier, M., Chiusa, S., Lonquety, M., Renault, N., Wong, Y., Cantalloube, H., Chomilier, J., Hochez, J., Pothier, J., Villoutreix, B. O., Zagury, J.-F., & Tufféry, P. (2005). RPBS: A web resource for structural bioinformatics. Nucleic Acids Research, 33(Web Server issue), W44–9. https://doi.org/10.1093/nar/gki477
  • Andersen, C. B. F., Ballut, L., Johansen, J. S., Chamieh, H., Nielsen, K. H., Oliveira, C. L. P., Pedersen, J. S., Séraphin, B., Le Hir, H., & Andersen, G. R. (2006). Structure of the exon junction core complex with a trapped DEAD-Box ATPase bound to RNA. Science (New York, N.Y.), 313(5795), 1968–1972. https://doi.org/10.1126/science.1131981
  • Arévalo, J. M. C., & Amorim, J. C. (2022). Virtual screening, optimization and molecular dynamics analyses highlighting a pyrrolo[1,2-a]quinazoline derivative as a potential inhibitor of DNA gyrase B of Mycobacterium tuberculosis. Scientific Reports, 12(1), 4742. https://doi.org/10.1038/s41598-022-08359-x
  • Awuni, E., & Musah, R. A. (2023). Proposing lead compounds for the development of SARS-CoV-2 receptor-binding inhibitors. Journal of Biomolecular Structure & Dynamics, 1–16. https://doi.org/10.1080/07391102.2023.2204505
  • Batchelor, T. T., Mulholland, P., Neyns, B., Nabors, L. B., Campone, M., Wick, A., Mason, W., Mikkelsen, T., Phuphanich, S., Ashby, L. S., Degroot, J., Gattamaneni, R., Cher, L., Rosenthal, M., Payer, F., Jürgensmeier, J. M., Jain, R. K., Sorensen, A. G., Xu, J., Liu, Q., & van den Bent, M. (2013). Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 31(26), 3212–3218. https://doi.org/10.1200/JCO.2012.47.2464
  • Bitencourt-Ferreira, G., Pintro, V. O., & de Azevedo, W. F. (2019). Docking with AutoDock4. Methods in Molecular Biology (Clifton, N.J.), 2053, 125–148. https://doi.org/10.1007/978-1-4939-9752-7_9
  • Bhardwaj, V. K., & Purohit, R. (2020). A new insight into protein-protein interactions and the effect of conformational alterations in PCNA. International Journal of Biological Macromolecules, 148, 999–1009. https://doi.org/10.1016/j.ijbiomac.2020.01.212
  • Bhardwaj, V. K., & Purohit, R. (2019). Computational investigation on effect of mutations in PCNA resulting in structural perturbations and inhibition of mismatch repair pathway. Journal of Biomolecular Structure & Dynamics, 38(7), 1963–1974. https://doi.org/10.1080/07391102.2019.1621210
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Chang, E., Pohling, C., Natarajan, A., Witney, T. H., Kaur, J., Xu, L., Gowrishankar, G., D'Souza, A. L., Murty, S., Schick, S., Chen, L., Wu, N., Khaw, P., Mischel, P., Abbasi, T., Usmani, S., Mallick, P., & Gambhir, S. S. (2016). AshwaMAX and Withaferin A inhibits gliomas in cellular and murine orthotopic models. Journal of Neuro-Oncology, 126(2), 253–264. https://doi.org/10.1007/s11060-015-1972-1
  • Chang, M. W., Ayeni, C., Breuer, S., & Torbett, B. E. (2010). Virtual screening for HIV protease inhibitors: A comparison of AutoDock 4 and Vina. PloS One, 5(8), e11955. https://doi.org/10.1371/journal.pone.0011955
  • Chen, F., Wang, Z., Wang, C., Xu, Q., Liang, J., Xu, X., Yang, J., Wang, C., Jiang, T., & Yu, R. (2017). Application of reverse docking for target prediction of marine compounds with anti-tumor activity. Journal of Molecular Graphics & Modelling, 77, 372–377. https://doi.org/10.1016/j.jmgm.2017.09.015
  • Çoban, G. (2024). Structure-based virtual screening and molecular dynamics simulations for detecting novel candidates for allosteric inhibition of EGFRT790M. Journal of Biomolecular Structure & Dynamics, 42(2), 571–597. https://doi.org/10.1080/07391102.2023.2194425
  • Deng, Q.-P., Wang, M.-J., Zeng, X., Chen, G. G., & Huang, R.-Y. (2017). Effects of Glycyrrhizin in a Mouse Model of Lung Adenocarcinoma. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 41(4), 1383–1392. https://doi.org/10.1159/000467897
  • Dhami, J., Chang, E., & Gambhir, S. S. (2017). Withaferin A and its potential role in glioblastoma (GBM). Journal of Neuro-Oncology, 131(2), 201–211. https://doi.org/10.1007/s11060-016-2303-x
  • Dou, J., Wang, Z., Ma, L., Peng, B., Mao, K., Li, C., Su, M., Zhou, C., & Peng, G. (2018). Baicalein and baicalin inhibit colon cancer using two distinct fashions of apoptosis and senescence. Oncotarget, 9(28), 20089–20102. https://doi.org/10.18632/oncotarget.24015
  • Duan, L., Liu, X., & Zhang, J. Z. H. (2016). Interaction Entropy: A New Paradigm for Highly Efficient and Reliable Computation of Protein–Ligand Binding Free Energy. Journal of the American Chemical Society, 138(17), 5722–5728. https://doi.org/10.1021/jacs.6b02682
  • Efferth, T., Saeed, M. E. M., Mirghani, E., Alim, A., Yassin, Z., Saeed, E., Khalid, H. E., & Daak, S. (2017). Integration of phytochemicals and phytotherapy into cancer precision medicine. Oncotarget, 8(30), 50284–50304. https://doi.org/10.18632/oncotarget.17466
  • Eswaramoorthy, R., Hailekiros, H., Kedir, F., & Endale, M. (2021). In silico Molecular Docking, DFT Analysis and ADMET Studies of Carbazole Alkaloid and Coumarins from Roots of Clausena anisata: A Potent Inhibitor for Quorum Sensing. Advances and Applications in Bioinformatics and Chemistry: AABC, 14, 13–24. https://doi.org/10.2147/AABC.S290912
  • Frédérich, M., Marcowycz, A., Cieckiewicz, E., Mégalizzi, V., Angenot, L., & Kiss, R. (2009). In vitro anticancer potential of tree extracts from the Walloon Region forest. Planta Medica, 75(15), 1634–1637. https://doi.org/10.1055/s-0029-1185867
  • Fu, L., Ye, F., Feng, Y., Yu, F., Wang, Q., Wu, Y., Zhao, C., Sun, H., Huang, B., Niu, P., Song, H., Shi, Y., Li, X., Tan, W., Qi, J., & Gao, G. F. (2020). Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nature Communications, 11(1), 4417. https://doi.org/10.1038/s41467-020-18233-x
  • Garg, S., Kaul, S. C., & Wadhwa, R. (2018). Anti-stress and glial differentiation effects of a novel combination of cucurbitacin B and withanone (CucWi-N): experimental evidence. Annals of Neurosciences, 25(4), 201–209. https://doi.org/10.1159/000490693
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Hanif, F., Muzaffar, K., Perveen, K., Malhi, S. M., & Simjee, S. U. (2017). Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pacific Journal of Cancer Prevention: APJCP, 18(1), 3–9. https://doi.org/10.22034/APJCP.2017.18.1.3
  • Ibrahim, J. M., A, S., Nair, A. S., Oommen, O. V., & Sudhakaran, P. R. (2023). In silico screening and epitope mapping of leptospiral outer membrane protein—Lsa46. Journal of Biomolecular Structure & Dynamics, 41(1), 26–44. https://doi.org/10.1080/07391102.2021.2003247
  • Jethwa, M., Gangopadhyay, A., & Saha, A. (2023). Search for potentially biased epidermal growth factor receptor (EGFR) inhibitors through pharmacophore modelling, molecular docking, and molecular dynamics (MD) simulation approaches. Journal of Biomolecular Structure & Dynamics, 41(5), 1681–1689. https://doi.org/10.1080/07391102.2021.2023644
  • Jovčevska, I., Zupanec, N., Urlep, Ž., Vranič, A., Matos, B., Stokin, C. L., Muyldermans, S., Myers, M. P., Buzdin, A. A., Petrov, I., & Komel, R. (2017). Differentially expressed proteins in glioblastoma multiforme identified with a nanobody-based anti-proteome approach and confirmed by OncoFinder as possible tumor-class predictive biomarker candidates. Oncotarget, 8(27), 44141–44158. https://doi.org/10.18632/oncotarget.17390
  • Kellenberger, E., Rodrigo, J., Muller, P., & Rognan, D. (2004). Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins, 57(2), 225–242. https://doi.org/10.1002/prot.20149
  • Kinra, M., Joseph, A., Nampoothiri, M., Arora, D., & Mudgal, J. (2021). Inhibition of NLRP3-inflammasome mediated IL-1β release by phenylpropanoic acid derivatives: In-silico and in-vitro approach. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 157, 105637. https://doi.org/10.1016/j.ejps.2020.105637
  • Lee, W.-L., Huang, J.-Y., & Shyur, L.-F. (2013). Phytoagents for Cancer Management: Regulation of Nucleic Acid Oxidation, ROS, and Related Mechanisms. Oxidative Medicine and Cellular Longevity, 2013, 925804. https://doi.org/10.1155/2013/925804
  • Legler, J. M., Gloeckler Ries, L. A., Smith, M. A., Warren, J. L., Heineman, E. F., Kaplan, R. S., & Linet, M. S. (1999). RESPONSE: Re: Brain and Other Central Nervous System Cancers: Recent Trends in Incidence and Mortality.Journal of the National Cancer Institute, 91(23),2050A–22051. https://doi.org/10.1093/jnci/91.23.2050A
  • Li, G., Zhou, W., Zhao, X., & Xie, Y. (2021). In silico molecular docking and interaction analysis of traditional chinese medicines against SARS-CoV-2 Receptor. Natural Product Communications, 16(5), 1934578X2110150. https://doi.org/10.1177/1934578X211015030
  • Li, X., Wang, C., Chen, G., Zou, W., Deng, Y., & Zhou, F. (2022). EIF4A3-induced circCCNB1 (hsa_circ_0001495) promotes glioma progression by elevating CCND1 through interacting miR-516b-5p and HuR. Metabolic Brain Disease, 37(3), 819–833. https://doi.org/10.1007/s11011-021-00899-x
  • Li, Y., Zheng, X., Wang, J., Sun, M., Li, D., Wang, Z., Li, J., Li, Y., & Liu, Y. (2023). Exosomal < scp > circ‐AHCY</scp > promotes glioblastoma cell growth via Wnt/β‐catenin signaling pathway. Annals of Clinical and Translational Neurology, 10(6), 865–878. https://doi.org/10.1002/acn3.51743
  • Liu, X., Guo, Q., Gao, G., Cao, Z., Guan, Z., Jia, B., Wang, W., Zhang, K., Zhang, W., Wang, S., Li, W., Hao, Q., Zhang, Y., Li, M., Zhang, W., & Gu, J. (2023). Exosome-transmitted circCABIN1 promotes temozolomide resistance in glioblastoma via sustaining ErbB downstream signaling. Journal of Nanobiotechnology, 21(1), 45. https://doi.org/10.1186/s12951-023-01801-w
  • Liu, N., & Xu, Z. (2019). Using LeDock as a docking tool for computational drug design. In IOP Conference Series: Earth and Environmental Science. IOP Publishing, 218(1), 012143. https://doi.org/10.1088/1755-1315/218/1/012143
  • Lu, L., Zhao, Z., Liu, L., Gong, W., & Dong, J. (2018). Combination of baicalein and docetaxel additively inhibits the growth of non-small cell lung cancer in vivo. Traditional Medicine and Modern Medicine, 01(03), 213–218. https://doi.org/10.1142/S2575900018500131
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Martínez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PloS One, 10(3), e0119264. https://doi.org/10.1371/journal.pone.0119264
  • Mian, S. Y., Nambiar, A., & Kaliaperumal, C. (2022). Phytotherapy for the treatment of Glioblastoma: A review. Frontiers in Surgery, 9, 844993. https://doi.org/10.3389/fsurg.2022.844993
  • Mohanraj, K., Karthikeyan, B. S., Vivek-Ananth, R. P., Chand, R. P. B., Aparna, S. R., Mangalapandi, P., & Samal, A. (2018). IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Scientific Reports, 8(1), 4329. https://doi.org/10.1038/s41598-018-22631-z
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of computational chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Murthy, S. V., Fathima, S. N., & Mote, R. (2022). Hydroalcoholic extract of ashwagandha improves sleep by modulating GABA/Histamine receptors and EEG slow-wave pattern in in vitro - in vivo experimental models. Preventive Nutrition and Food Science, 27(1), 108–120. https://doi.org/10.3746/pnf.2022.27.1.108
  • Nayarisseri, A., & Hood, E. A. (2018). Advancement in microbial cheminformatics. Current Topics in Medicinal Chemistry, 18(29), 2459–2461. https://doi.org/10.2174/1568026619666181120121528
  • Newman, D. J., & Cragg, G. M. (2007). Natural products as sources of new drugs over the last 25 years. Journal of Natural Products, 70(3), 461–477. https://doi.org/10.1021/np068054v
  • Nocedal, J., & Wright, S. J. (Eds.). (1999). Numerical Optimization. Springer-Verlag. https://doi.org/10.1007/b98874
  • Panossian, A., Seo, E.-J., & Efferth, T. (2018). Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 50, 257–284. https://doi.org/10.1016/j.phymed.2018.09.204
  • Cojocneanu Petric, R., Braicu, C., Raduly, L., Zanoaga, O., Dragos, N., Monroig, P., Dumitrascu, D., & Berindan-Neagoe, I. (2015). Phytochemicals modulate carcinogenic signaling pathways in breast and hormone-related cancers. OncoTargets and Therapy, 8, 2053–2066. https://doi.org/10.2147/OTT.S83597
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera?A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pistollato, F., Bremer-Hoffmann, S., Basso, G., Cano, S. S., Elio, I., Vergara, M. M., Giampieri, F., & Battino, M. (2016). Targeting glioblastoma with the use of phytocompounds and nanoparticles. Targeted Oncology, 11(1), 1–16. https://doi.org/10.1007/s11523-015-0378-5
  • Romano, J. D., & Tatonetti, N. P. (2019). Informatics and Computational Methods in Natural Product Drug Discovery: A Review and Perspectives. Frontiers in Genetics, 10, 368. https://doi.org/10.3389/fgene.2019.00368
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–W447. https://doi.org/10.1093/nar/gkv315
  • Shah, N., Kataria, H., Kaul, S. C., Ishii, T., Kaur, G., & Wadhwa, R. (2009). Effect of the alcoholic extract of Ashwagandha leaves and its components on proliferation, migration, and differentiation of glioblastoma cells: Combinational approach for enhanced differentiation. Cancer Science, 100(9), 1740–1747. https://doi.org/10.1111/j.1349-7006.2009.01236.x
  • Shah, N., Singh, R., Sarangi, U., Saxena, N., Chaudhary, A., Kaur, G., Kaul, S. C., & Wadhwa, R. (2015). Combinations of Ashwagandha leaf extracts protect brain-derived cells against oxidative stress and induce differentiation. PloS One, 10(3), e0120554. https://doi.org/10.1371/journal.pone.0120554
  • Sharda, S., Khandelwal, R., Adhikary, R., Sharma, D., Majhi, M., Hussain, T., Nayarisseri, A., & Singh, S. K. (2019). A computer - aided drug designing for pharmacological inhibition of mutant ALK for the treatment of non-small cell lung cancer. Current Topics in Medicinal Chemistry, 19(13), 1129–1144. https://doi.org/10.2174/1568026619666190521084941
  • Singh, R., Bhardwaj, V., & Purohit, R. (2021). Identification of a novel binding mechanism of Quinoline based molecules with lactate dehydrogenase of Plasmodium falciparum. Journal of Biomolecular Structure & Dynamics, 39(1), 348–356. https://doi.org/10.1080/07391102.2020.1711809
  • Singh, S., Khare, G., Bahal, R. K., Ghosh, P. C., & Tyagi, A. K. (2018). Identification of Mycobacterium tuberculosis BioA inhibitors by using structure-based virtual screening. Drug Design, Development and Therapy, 12, 1065–1079.https://doi.org/10.2147/DDDT.S144240
  • Sousa da Silva, A. W., & Vranken, W. F. (2012). ACPYPE - AnteChamber PYthon Parser interfacE. BMC Research Notes, 5(1), 367. https://doi.org/10.1186/1756-0500-5-367
  • Souza, J. V. P., Kioshima, E. S., Murase, L. S., Lima, D. S., Seixas, F. A. V., Maigret, B., & Cardoso, R. F. (2023). Identification of new putative inhibitors of Mycobacterium tuberculosis 3-dehydroshikimate dehydratase from a combination of ligand- and structure-based and deep learning in silico approaches. Journal of Biomolecular Structure & Dynamics, 41(7), 2971–2980.https://doi.org/10.1080/07391102.2022.2042389
  • Straeter, T. A. (1971). On the Extension of the Davidon-Broyden Class of Rank One, Quasi-Newton Minimization Methods to an Infinite Dimensional Hilbert Space with Applications to Optimal Control Problems. North Carolina State University Raleigh, NC.
  • Sympli, H. D. (2021). Estimation of drug-likeness properties of GC-MS separated bioactive compounds in rare medicinal Pleione maculata using molecular docking technique and SwissADME in silico tools. Network Modeling and Analysis in Health Informatics and Bioinformatics, 10(1), 14. https://doi.org/10.1007/s13721-020-00276-1
  • Tang, W., Wang, D., Shao, L., Liu, X., Zheng, J., Xue, Y., Ruan, X., Yang, C., Liu, L., Ma, J., Li, Z., & Liu, Y. (2020). LINC00680 and TTN-AS1 Stabilized by EIF4A3 Promoted Malignant Biological Behaviors of Glioblastoma Cells. Molecular Therapy. Nucleic Acids, 19, 905–921. https://doi.org/10.1016/j.omtn.2019.10.043
  • Thakur, A., Patwa, J., Pant, S., Sharma, A., & Flora, S. J. S. (2021). Interaction study of monoisoamyl dimercaptosuccinic acid with bovine serum albumin using biophysical and molecular docking approaches. Scientific Reports, 11(1), 4068. https://doi.org/10.1038/s41598-021-83534-0
  • Tietcheu Galani, B. R., Ayissi Owona, V. B., Guemmogne Temdie, R. J., Metzger, K., Atsama Amougou, M., Djamen Chuisseu, P. D., Fondjo Kouam, A., Ngounoue Djuidje, M., Aliouat-Denis, C.-M., Cocquerel, L., & Fewou Moundipa, P. (2021). In silico and in vitro screening of licensed antimalarial drugs for repurposing as inhibitors of hepatitis E virus. In Silico Pharmacology, 9(1), 35. https://doi.org/10.1007/s40203-021-00093-y
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W., & Taylor, R. D. (2003). Improved protein-ligand docking using GOLD. Proteins, 52(4), 609–623. https://doi.org/10.1002/prot.10465
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wang, L., An, Y., Wei, X., Huang, X., Tu, Y., Qiao, L., & Zhu, W. (2023). In silico screening combined with bioactivity evaluation to identify AMI-1 as a novel anticancer compound by targeting AXL. Journal of Biomolecular Structure & Dynamics, 1–13. https://doi.org/10.1080/07391102.2023.2255654
  • Wang, Q., Rager, J. D., Weinstein, K., Kardos, P. S., Dobson, G. L., Li, J., & Hidalgo, I. J. (2005). Evaluation of the MDR-MDCK cell line as a permeability screen for the blood–brain barrier. International Journal of Pharmaceutics, 288(2), 349–359. https://doi.org/10.1016/j.ijpharm.2004.10.007
  • Wang, R., Zhang, S., Chen, X., Li, N., Li, J., Jia, R., Pan, Y., & Liang, H. (2018). EIF4A3-induced circular RNA MMP9 (circMMP9) acts as a sponge of miR-124 and promotes glioblastoma multiforme cell tumorigenesis. Molecular Cancer, 17(1), 166. https://doi.org/10.1186/s12943-018-0911-0
  • Wei, L., Pan, M., Jiang, Q., Hu, B., Zhao, J., Zou, C., Chen, L., Tang, C., & Zou, D. (2023). Eukaryotic initiation factor 4 A-3 promotes glioblastoma growth and invasion through the Notch1-dependent pathway. BMC Cancer, 23(1), 550. https://doi.org/10.1186/s12885-023-10946-8
  • Wei, Y., Lu, C., Zhou, P., Zhao, L., Lyu, X., Yin, J., Shi, Z., & You, Y. (2021). EIF4A3-induced circular RNA ASAP1 promotes tumorigenesis and temozolomide resistance of glioblastoma via NRAS/MEK1/ERK1-2 signaling. Neuro-oncology, 23(4), 611–624. https://doi.org/10.1093/neuonc/noaa214
  • Wong, E. T., Hess, K. R., Gleason, M. J., Jaeckle, K. A., Kyritsis, A. P., Prados, M. D., Levin, V. A., & Yung, W. K. (1999). Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 17(8), 2572–2578. https://doi.org/10.1200/JCO.1999.17.8.2572
  • Yan, X.-B, et al. (2018). Apigenin inhibits proliferation of human chondrosarcoma cells via cell cycle arrest and mitochondrial apoptosis induced by ROS generation-an in vitro and in vivo study. International Journal of Clinical and Experimental Medicine. 11(3), 1615–1631. https://e-century.us/files/ijcem/11/3/ijcem0057902.pdf.
  • Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255
  • Xu, L., Sun, H., Li, Y., Wang, J., & Hou, T. (2013). Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models. The Journal of Physical Chemistry. B, 117(28), 8408–8421.https://doi.org/10.1021/jp404160y
  • Youlden, D. R., Baade, P. D., Valery, P. C., Ward, L. J., Green, A. C., & Aitken, J. F. (2012). Childhood cancer mortality in Australia. Cancer Epidemiology, 36(5), 476–480. https://doi.org/10.1016/j.canep.2012.06.001
  • Zhang, W., Su, J., Xu, H., Yu, S., Liu, Y., Zhang, Y., Sun, L., Yue, Y., & Zhou, X. (2017). Dicumarol inhibits PDK1 and targets multiple malignant behaviors of ovarian cancer cells. PloS One, 12(6), e0179672. https://doi.org/10.1371/journal.pone.0179672
  • Zhu, Y., Ren, C., & Yang, L. (2021). Effect of eukaryotic translation initiation factor 4A3 in malignant tumors. Oncology Letters, 21(5), 358. https://doi.org/10.3892/ol.2021.12619

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.