93
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessment of iridoids and their similar structures as antineoplastic drugs by in silico approach

ORCID Icon, ORCID Icon & ORCID Icon
Received 09 Oct 2023, Accepted 30 Jan 2024, Published online: 12 Feb 2024

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Adcock, S. A., & McCammon, J. A. (2006). Molecular dynamics: Survey of methods for simulating the activity of proteins. Chemical Reviews, 106(5), 1589–1615. https://doi.org/10.1021/cr040426m
  • Alamri, M. A., Alawam, A. S., Alshahrani, M. M., Kawsar, S. M. A., Saha, S., & Prinsa, (2023). Establishing the role of iridoids as potential Kirsten rat sarcoma viral oncogene homolog g12c inhibitors using molecular docking; molecular docking simulation; molecular mechanics Poisson–Boltzmann surface area; frontier molecular orbital theory; molecular electrostatic potential; and absorption, distribution, metabolism, excretion, and toxicity analysis. Molecules (Basel, Switzerland), 28(13). https://doi.org/10.3390/molecules28135050
  • Alhadrami, H. A., Alkhatabi, H., Abduljabbar, F. H., Abdelmohsen, U. R., & Sayed, A. M. (2021). Anticancer potential of green synthesized silver nanoparticles of the soft coral cladiella pachyclados supported by network pharmacology and in silico analyses. Pharmaceutics, 13(11), 1846. https://doi.org/10.3390/pharmaceutics13111846
  • Al-Jarf, R., de Sá, A. G. C., Pires, D. E. V., & Ascher, D. B. (2021). pdCSM-Cancer: Using graph-based signatures to identify small molecules with anticancer properties. Journal of Chemical Information and Modeling, 61(7), 3314–3322. https://doi.org/10.1021/acs.jcim.1c00168
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
  • Basak, D., Arrighi, S., Darwiche, Y., & Deb, S. (2022). Comparison of anticancer drug toxicities: Paradigm shift in adverse effect profile. Life (Basel, Switzerland), 12(1) https://doi.org/10.3390/life12010048
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bray, F., Laversanne, M., Weiderpass, E., & Soerjomataram, I. (2021). The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer, 127(16), 3029–3030. https://doi.org/10.1002/cncr.33587
  • Brogi, S., Ramalho, T. C., Kuca, K., Medina-Franco, J. L., & Valko, M. (2020). Editorial: In silico methods for drug design and discovery. Frontiers in Chemistry (Vol. 8). Frontiers Media S.A. https://doi.org/10.3389/fchem.2020.00612
  • Carpenter, T. S., Kirshner, D. A., Lau, E. Y., Wong, S. E., Nilmeier, J. P., & Lightstone, F. C. (2014). A method to predict blood-brain barrier permeability of drug-like compounds using molecular dynamics simulations. Biophysical Journal, 107(3), 630–641. https://doi.org/10.1016/j.bpj.2014.06.024
  • Chagas, C. M., Moss, S., & Alisaraie, L. (2018). Drug metabolites and their effects on the development of adverse reactions: Revisiting Lipinski’s rule of five. International Journal of Pharmaceutics, 549(1-2), 133–149. https://doi.org/10.1016/j.ijpharm.2018.07.046
  • Chaudhuri, R. K., Ikeda, T., & Hutchinson, C. R. (1984). A regiospecific synthesis of iridoids based on the paterno-buchi enone photoannulation reaction. Journal of the American Chemical Society, 106(20), 6004–6006. https://doi.org/10.1021/ja00332a043
  • Chavez, D. E., & Jacobsen, E. N. (2003). Catalyst-controlled inverse-electron-demand hetero-Diels-Alder reactions in the enantio- and diastereoselective synthesis of iridoid natural products. Organic Letters, 5(14), 2563–2565. https://doi.org/10.1021/ol034883l
  • Chen, S., He, Y., Geng, Y., Wang, Z., Han, L., & Han, W. (2022). Molecular dynamic simulations of bromodomain and extra-terminal protein 4 bonded to potent inhibitors. Molecules (Basel, Switzerland), 27(1), 118–131. https://doi.org/10.3390/molecules27010118
  • Chikalov, I., Yao, P., Moshkov, M., & Latombe, J. C. (2011). Learning probabilistic models of hydrogen bond stability from molecular dynamics simulation trajectories. BMC Bioinformatics, 12(S1), S34–S40. https://doi.org/10.1186/1471-2105-12-S1-S34
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Czodrowski, P., Mallinger, A., Wienke, D., Esdar, C., Pöschke, O., Busch, M., Rohdich, F., Eccles, S. A., Ortiz-Ruiz, M. J., Schneider, R., Raynaud, F. I., Clarke, P. A., Musil, D., Schwarz, D., Dale, T., Urbahns, K., Blagg, J., & Schiemann, K. (2016). Structure-based optimization of potent, selective, and orally bioavailable CDK8 inhibitors discovered by high-throughput screening. Journal of Medicinal Chemistry, 59(20), 9337–9349. https://doi.org/10.1021/acs.jmedchem.6b00597
  • Di, L. (2021). An update on the importance of plasma protein binding in drug discovery and development. Expert Opinion on Drug Discovery, 16(12), 1453–1465. https://doi.org/10.1080/17460441.2021.1961741
  • Dong, L., Qu, X., Zhao, Y., & Wang, B. (2021). Prediction of binding free energy of protein-ligand complexes with a hybrid molecular mechanics/generalized born surface area and machine learning method. ACS Omega, 6(48), 32938–32947. https://doi.org/10.1021/acsomega.1c04996
  • Drescher, C. W., Bograd, A. J., Chang, S. C., Weerasinghe, R. K., Vita, A., & Bell, R. B. (2022). Cancer case trends following the onset of the COVID-19 pandemic: A community-based observational study with extended follow-up. Cancer, 128(7), 1475–1482. https://doi.org/10.1002/cncr.34067
  • Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V., & Poroikov, V. V. (2014). Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chemistry of Heterocyclic Compounds, 50(3), 444–457. https://doi.org/10.1007/s10593-014-1496-1
  • Foloppe, N., & Mackerell, A. D. (2000). All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data all-atom empirical force field for nucleic acids. I. Journal of Computational Chemistry, 21(2), 86–104.
  • Gálvez, M., Martín-Cordero, C., & Ayuso, M. J. (2005). Iridoids as DNA topoisomers I poisons. Journal of Enzyme Inhibition and Medicinal Chemistry, 20(4), 389–392. https://doi.org/10.1080/14756360500141879
  • Gilson, M. K., Liu, T., Baitaluk, M., Nicola, G., Hwang, L., & Chong, J. (2016). Binding DB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Research, 44(D1), D1045–D1053. https://doi.org/10.1093/nar/gkv1072
  • Gupta, A. K., Tulsyan, S., Bharadwaj, M., & Mehrotra, R. (2019). Systematic Review on cytotoxic and anticancer potential of n-substituted isatins as novel class of compounds useful in multidrug-resistant cancer therapy: In silico and in vitro analysis. Topics in Current Chemistry, 377(3) https://doi.org/10.1007/s41061-019-0240-9
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). SOFTWARE open access Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17
  • Hollingsworth, S. A., & Karplus, P. A. (2010). A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. Biomolecular Concepts, 1(3-4), 271–283. https://doi.org/10.1515/bmc.2010.022
  • Hope, I., Endicott, J. A., & Watt, J. E. (2022). Emerging approaches to CDK inhibitor development, a structural perspective. RSC Chemical Biology, 4(2), 146–164. https://doi.org/10.1039/d2cb00201a
  • Hussain, H., Nazir, M., Green, I. R., Saleem, M., & Raza, M. L. (2019). Therapeutic potential of iridoid derivatives: Patent review. Inventions, 4(2), 29. https://doi.org/10.3390/inventions4020029
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2023). PubChem 2023 update. Nucleic Acids Research, 51(D1), D1373–D1380. https://doi.org/10.1093/nar/gkac956
  • Liu, P., Lu, J., Yu, H., Ren, N., Lockwood, F. E., & Wang, Q. J. (2017). Lubricant shear thinning behavior correlated with variation of radius of gyration via molecular dynamics simulations. The Journal of Chemical Physics, 147(8) https://doi.org/10.1063/1.4986552
  • Lüthy, R., Bowie, J., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356(6364), 83–85. https://doi.org/10.1038/356083a0
  • Martínez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS One, 10(3), e0119264. https://doi.org/10.1371/journal.pone.0119264
  • Meng, F. (2013). Molecular dynamics simulation of VEGFR2 with Sorafenib and other urea-substituted aryloxy compounds. Journal of Theoretical Chemistry, 2013, 1–7. https://doi.org/10.1155/2013/739574
  • Morris, G. M., Ruth, H., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Ndongwe, T., Witika, B. A., Mncwangi, N. P., Poka, M. S., Skosana, P. P., Demana, P. H., Summers, B., & Siwe-Noundou, X. (2023). Iridoid derivatives as anticancer agents: An updated review from 1970–2022. Cancers, 15(3), 770. https://doi.org/10.3390/cancers15030770
  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
  • Onufriev, A. V., & Case, D. A. (2019). Generalized Born Implicit Solvent Models for Biomolecules. Annual review of biophysics, 48(1), 275–296. https://doi.org/10.1146/annurev-biophys-052118-115325
  • Ou-Yang, S. S., Lu, J. Y., Kong, X. Q., Liang, Z. J., Luo, C., & Jiang, H. (2012). Computational drug discovery. Acta Pharmacologica Sinica, 33(9), 1131–1140. https://doi.org/10.1038/aps.2012.109
  • Philip, S., Kumarasiri, M., Teo, T., Yu, M., & Wang, S. (2018). Cyclin-dependent kinase 8: A new hope in targeted cancer therapy? Journal of Medicinal Chemistry, 61(12), 5073–5092. https://doi.org/10.1021/acs.jmedchem.7b00901
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Poursalim, M., Shasaltaneh, M. D., Jafarian, V., & Salehabadi, H. (2022). The novel anti-cancer feature of Brazzein through activating of hTLR5 by integration of biological evaluation: Molecular docking and molecular dynamics simulation. Scientific Reports, 12(1) https://doi.org/10.1038/s41598-022-26487-2
  • Rajendran, P.,Rathinasabapathy, R.,Kishore, S., &Bellucci, S. (2023). Computational-Simulation-Based Behavioral Analysis of Chemical Compounds. Journal of Composites Science, 7(5), 196. https://doi.org/10.3390/jcs7050196
  • Rathod, S., Shinde, K., Porlekar, J., Choudhari, P., Dhavale, R., Mahuli, D., Tamboli, Y., Bhatia, M., Haval, K. P., Al-Sehemi, A. G., & Pannipara, M. (2022). Computational exploration of anti-cancer potential of flavonoids against cyclin-dependent kinase 8: An in silico molecular docking and dynamic approach. ACS Omega, 8(1), 391–409. https://doi.org/10.1021/acsomega.2c04837
  • Sánchez-Martínez, C., Lallena, M. J., Sanfeliciano, S. G., & de Dios, A. (2019). Cyclin dependent kinase (CDK) inhibitors as anticancer drugs: Recent advances. Bioorganic & Medicinal Chemistry Letters, 29(20), 126637. https://doi.org/10.1016/j.bmcl.2019.126637
  • Schrödinger, L., & DeLano, W. (2020). PyMOL. Retrieved from http://www.pymol.org/pymol
  • Sharma, B. P., Adhikari, J. S., Marasini, B. P., Adhikari, R., Pandey, S. K., & Sharma, M. L. (2023). Triazole based Schiff bases and their oxovanadium(IV) complexes: Synthesis, characterization, antibacterial assay, and computational assessments. Heliyon, 9(4), e15239. https://doi.org/10.1016/j.heliyon.2023.e15239
  • Solum, E., Hansen, T. V., Aesoy, R., & Herfindal, L. (2020). New CDK8 inhibitors as potential anti-leukemic agents – Design, synthesis and biological evaluation. Bioorganic & Medicinal Chemistry, 28(10), 115461. https://doi.org/10.1016/j.bmc.2020.115461
  • Still, W. C., Tempczyk, A., Hawley, R. C., & Hendrickson, T. (1990). Semianalytical treatment of solvation for molecular mechanics and dynamics. Journal of the American Chemical Society, 112(16), 6127–6129. https://doi.org/10.1021/ja00172a038
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
  • Taghizadeh, M. S., Niazi, A., Moghadam, A., & Afsharifar, A. (2022). Experimental, molecular docking and molecular dynamic studies of natural products targeting overexpressed receptors in breast cancer. PLoS One, 17(5), e0267961. https://doi.org/10.1371/journal.pone.0267961
  • Tahlan, S., Kumar, S., Ramasamy, K., Lim, S. M., Shah, S. A. A., Mani, V., & Narasimhan, B. (2019). In-silico molecular design of heterocyclic benzimidazole scaffolds as prospective anticancer agents. BMC Chemistry, 13(1), 90. https://doi.org/10.1186/s13065-019-0608-5
  • Tan, G. T., Pezzuto, J. M., Kinghorn, A. D., & Hughes, S. H. (1991). Evaluation of natural products as inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase1. Journal of Natural Products, 54(1), 143–154. https://doi.org/10.1021/np50073a012
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Tundis, R., Loizzo, M. R., Menichini, F., Statti, G. A., & Menichini, F. (2008). Biological and pharmacological activities of iridoids: Recent developments. In Reviews in Medicinal Chemistry, 8(4), 399–420. https://doi.org/10.2174/138955708783955926
  • Tutone, M., & Almerico, A. M. (2017). Recent advances on CDK inhibitors: An insight by means of in silico methods. European Journal of Medicinal Chemistry, 142, 300–315. https://doi.org/10.1016/j.ejmech.2017.07.067
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). Gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Wang, T., Yang, Z., Zhang, Y., Yan, W., Wang, F., He, L., Zhou, Y., & Chen, L. (2017). Discovery of novel CDK8 inhibitors using multiple crystal structures in docking-based virtual screening. European Journal of Medicinal Chemistry, 129, 275–286. https://doi.org/10.1016/j.ejmech.2017.02.020
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). Swiss-model: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255
  • Yusuf, D., Davis, A. M., Kleywegt, G. J., & Schmitt, S. (2008). An alternative method for the evaluation of docking performance: RSR vs RMSD. Journal of Chemical Information and Modeling, 48(7), 1411–1422. https://doi.org/10.1021/ci800084x
  • Zhang, D., & Lazim, R. (2017). Application of conventional molecular dynamics simulation in evaluating the stability of apomyoglobin in urea solution. Scientific Reports, 7, 44651. https://doi.org/10.1038/srep44651
  • Zhou, Y., Al-Jarf, R., Alavi, A., Nguyen, T. B., Rodrigues, C. H. M., Pires, D. E. V., & Ascher, D. B. (2022). kinCSM: Using graph-based signatures to predict small molecule CDK2 inhibitors. Protein Science: A Publication of the Protein Society, 31(11), e4453. https://doi.org/10.1002/pro.4453
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359–2368. https://doi.org/10.1002/jcc.21816

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.