365
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structural, functional, molecular docking analysis of a hypothetical protein from Talaromyces marneffei and its molecular dynamic simulation: an in-silico approach

, , &
Received 31 Jul 2023, Accepted 29 Jan 2024, Published online: 12 Feb 2024

References

  • Alam, R., Imon, R. R., Kabir Talukder, M. E., Akhter, S., Hossain, M. A., Ahammad, F., & Rahman, M. M. (2021). GC-MS analysis of phytoconstituents fromRuellia prostrataandSenna toraand identification of potential anti-viral activity against SARS-CoV-2. RSC Advances, 11(63), 40120–40135. https://doi.org/10.1039/d1ra06842c
  • Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S. R., Griffiths-Jones, S., Howe, K. L., Marshall, M., & Sonnhammer, E. L. L. (2002). The pfam protein families database. Nucleic Acids Research, 30(1), 276–280. https://doi.org/10.1093/nar/30.1.276
  • Benson, D. A., Boguski, M. S., Lipman, D. J., Ostell, J., Ouellette, B. F., Rapp, B. A., & Wheeler, D. L. (2000). GenBank. Nucleic Acids Research, 27(1), 12–17. https://doi.org/10.1093/nar/27.1.12.
  • Bharat Siva Varma, P., Adimulam, Y. B., & Kodukula, S. (2015). In silico functional annotation of a hypothetical protein from Staphylococcus aureus. Journal of Infection and Public Health, 8(6), 526–532. https://doi.org/10.1016/j.jiph.2015.03.007
  • Biswas, S., Mahmud, S., Mita, M. A., Afrose, S., Hasan, M. R., Sultana Shimu, M. S., Saleh, M. A., Mostafa-Hedeab, G., Alqarni, M., Obaidullah, A. J., & Batiha, G. E. S. (2021). Molecular docking and dynamics studies to explore effective inhibitory peptides against the spike receptor binding domain of SARS-CoV-2. Frontiers in Molecular Biosciences, 8, 791642. https://doi.org/10.3389/fmolb.2021.791642
  • Biovia, D. S. (2015). Discovery studio modeling environment. Dassault Syst Mes
  • Boratyn, G. M., Thierry-Mieg, J., Thierry-Mieg, D., Busby, B., & Madden, T. L. (2019). Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinformatics, 20(1), 405. https://doi.org/10.1186/s12859-019-2996-x
  • Bošnjak, I., Bojović, V., Šegvić-Bubić, T. S., & Bielen, A. (2014). Occurrence of protein disulfide bonds in different domains of life: A comparison of proteins from the Protein Data Bank. Protein Engineering, Design & Selection, 27(3), 65–72. https://doi.org/10.1093/protein/gzt063
  • Bowers, K. J., Edmond C., Huafeng, Ron O., Michael P. E., Brent A. G., John L. K., Istvan K., Mark A. M., Federico D. S., John K. S., & Yibing Shan. (2006). Scalable algorithms for molecular dynamics simulations [Paper presentation]. On Commodity Clusters,” in Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC’06. New York, NY: D. E. Shaw Research, LLC, USA. https://doi.org/10.1145/1188455.1188544
  • Buchan, D. W. A., & Jones, D. T. (2019). The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Research, 47(W1), W402–W407. https://doi.org/10.1093/nar/gkz297
  • Cao, C., Xi, L., & Chaturvedi, V. (2019). Talaromycosis (Penicilliosis) due to talaromyces (Penicillium) marneffei: Insights into the clinical trends of a major fungal disease 60 years after the discovery of the pathogen. Mycopathologia, 184(6), 709–720. https://doi.org/10.1007/s11046-019-00410-2
  • Capponi, P. S. M., & Segretain, G. (1956). Pénicillose de Rhizomys sinensis [Penicillosis from Rhizomys sinensis]. Bulletin de la Societe de Pathologie Exotique Filiales, 49(3), 418–421. PMID: 13364636
  • Castro-Lainez, M. T., Sierra-Hoffman, M., LLompart-Zeno, J., Adams, R., Howell, A., Hoffman-Roberts, H., Fader, R., Arroliga, A. C., & Jinadatha, C. (2018). Talaromyces marneffei infection in a non-HIV non-endemic population. IDCases, 12, 21–24. https://doi.org/10.1016/j.idcr.2018.02.013
  • Chan, J. F. W., Chan, T. S. Y., Gill, H., Lam, F. Y. F., Trendell-Smith, N. J., Sridhar, S., Tse, H., Lau, S. K. P., Hung, I. F. N., Yuen, K.-Y., & Woo, P. C. Y. (2015). Disseminated infections with talaromyces marneffei in non-AIDS patients given monoclonal antibodies against CD20 and kinase inhibitors. Emerging Infectious Diseases, 21(7), 1101–1106. https://doi.org/10.3201/eid2107.150138
  • Chan, J. F. W., Lau, S. K. P., Yuen, K. Y., & Woo, P. C. Y. (2016). Talaromyces (Penicillium) marneffei infection in non-HIV-infected patients. Emerging Microbes & Infections, 5(3), e19-9–9. https://doi.org/10.1038/emi.2016.18
  • Chou, K. C. (2005). Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics (Oxford, England), 21(1), 10–19. https://doi.org/10.1093/bioinformatics/bth466
  • Ciechanover, A., & Schwartz, A. L. (1989). How are substrates recognized by the ubiquitin-mediated proteolytic system. Trends in Biochemical Sciences, 14(12), 483–488. https://doi.org/10.1016/0968-0004(89)90180-1
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Cuomo, C. A., Shea, T., Nguyen, T., Ashton, P., Perfect, J., & Le, T. (2020). Complete Genome Sequences for Two Talaromyces marneffei. Microbiology Resource Announcements, 9(2), 9–11. https://doi.org/10.1128/MRA.01367-19.
  • de Castro, E., Sigrist, C. J. A., Gattiker, A., Bulliard, V., Langendijk-Genevaux, P. S., Gasteiger, E., Bairoch, A., & Hulo, N. (2006). ScanProsite: Detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Research, 34, W362–365. https://doi.org/10.1093/nar/gkl124
  • Deng, Z., Yun, M., & Ajello, L. (1986). Human penicilliosis marneffei and its relation to the bamboo rat (rhizomys pruinosus). Journal of Medical and Veterinary Mycology, 24(5), 383–389. https://doi.org/10.1080/02681218680000581
  • Dev, A., Gobind, S., Kaur, I., Kocher, G. S. (2015). Online journal of bioinformatics. Time, 16(1), 61–87. https://www.researchgate.net/publication/281403824
  • Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v.2 - A server for in silico prediction of allergens. Journal of Molecular Modeling, 20(6), 2278. https://doi.org/10.1007/s00894-014-2278-5
  • Dönnes, P., & Höglund, A. (2004). Predicting protein subcellular localization: Past, present, and future. Genomics, Proteomics & Bioinformatics, 2(4), 209–215. https://doi.org/10.1016/S1672-0229(04)02027-3
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 1–7. https://doi.org/10.1186/1471-2105-8-4
  • Du, Z., Su, H., Wang, W., Ye, L., Wei, H., Peng, Z., Anishchenko, I., Baker, D., & Yang, J. (2021). The trRosetta server for fast and accurate protein structure prediction. Nature Protocols, 16(12), 5634–5651. https://doi.org/10.1038/s41596-021-00628-9
  • Dundas, J., Ouyang, Z., Tseng, J., Binkowski, A., Turpaz, Y., & Liang, J. (2006). CASTp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Research, 34, W116–118. https://doi.org/10.1093/nar/gkl282
  • Duong, T. A. (1996). Infection due to Penicillium marneffei, an emerging pathogen: Review of 155 reported cases. Clinical Infectious Diseases, 23(1), 125–130. https://doi.org/10.1093/clinids/23.1.125
  • Egieyeh, S., Egieyeh, E., Malan, S., Christofells, A., & Fielding, B. (2021). Computational drug repurposing strategy predicted peptide-based drugs that can potentially inhibit the interaction of SARS-CoV-2 spike protein with its target (humanACE2). PLoS One. 16(1), e0245258. https://doi.org/10.1371/journal.pone.0245258
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404. https://doi.org/10.1016/S0076-6879(97)77022-8
  • Eisenhaber, F., & Bork, P. (1998). Wanted: Subcellular localization of proteins. Trends in Cell Biology, 8(4), 169–170. (https://doi.org/10.1016/s0962-8924(98)01226-4
  • Fariselli, P., Riccobelli, P., & Casadio, R. (1999). Role of evolutionary information in predicting the disulfide-bonding state of cysteine in proteins. Proteins: Structure, Function, and Genetics, 36(3), 340–346. https://doi.org/10.1002/(SICI)1097-0134(19990815)36:3<340::AID-PROT8>3.0.CO;2-D
  • Galperin, M. Y., & Koonin, E. V. (2004). Conserved hypothetical’ proteins: Prioritization of targets for experimental study. Nucleic Acids Research, 32(18), 5452–5463. https://doi.org/10.1093/nar/gkh885
  • Garrison, R. G., & Boyd, K. S. (1973). Dimorphism of Penicillium marneffei as observed by electron microscopy. Canadian Journal of Microbiology, 19(10), 1305–1309. https://doi.org/10.1139/m73-209
  • Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31(13), 3784–3788. https://doi.org/10.1093/nar/gkg563
  • Geourjon, C., & Deléage, G. (1995). Sopma: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences, 11(6), 681–684. https://doi.org/10.1093/bioinformatics/11.6.681
  • Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723. https://doi.org/10.1002/elps.1150181505
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G. P. S. (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS One. 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957
  • Guruprasad, K., Reddy, B. V. B., & Pandit, M. W. (1990). Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, 4(2), 155–161. https://doi.org/10.1093/protein/4.2.155
  • Halloran, K. T., Wang, Y., Arora, K., Chakravarthy, S., Irving, T. C., Bilsel, O., Brooks, C. L., & Matthews, C. R. (2019). Frustration and folding of a TIM barrel protein. Proceedings of the National Academy of Sciences of the United States of America, 116(33), 16378–16383. https://doi.org/10.1073/pnas.1900880116
  • Haque, H. F., Ahmed, A. S., Hoque, T., Saha, R. C., & Afroz, F. (2022). A first case report of talaromyces marneffei infection presenting as a nonresolving pneumonia in a non-hiv diabetic patient from Bangladesh. Bangladesh Journal of Medicine, 34(1), 62–64. https://doi.org/10.3329/bjm.v34i1.63430
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • He, L., Mei, X., Lu, S., Ma, J., Hu, Y., Mo, D., Chen, X., Fan, R., Xi, L., & Xie, T. (2021). Talaromyces marneffei infection in non–HIV-infected patients in mainland China. Mycoses, 64(10), 1170–1176. https://doi.org/10.1111/myc.13295
  • Hirokawa, T., Boon-Chieng, S., & Mitaku, S. (1998). SOSUI: Classification and secondary structure prediction system for membrane proteins. Bioinformatics (Oxford, England), 14(4), 378–379. https://doi.org/10.1093/bioinformatics/14.4.378
  • Horton, P., Park, K.-J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., & Nakai, K. (2007). WoLF PSORT: Protein localization predictor. Nucleic Acids Research, 35, W585–587. https://doi.org/10.1093/nar/gkm259
  • Imon, R. R., Samad, A., Alam, R., Alsaiari, A. A., Talukder, M. E. K., Almehmadi, M., Ahammad, F., & Mohammad, F. (2023). Computational formulation of a multiepitope vaccine unveils an exceptional prophylactic candidate against Merkel cell polyomavirus. Frontiers in Immunology, 14, 1160260. https://doi.org/10.3389/fimmu.2023.1160260
  • Islam, S. I., Mou, M. J., Sanjida, S., & Mahfuj, S. (2022). Functional annotation and characterization of a hypothetical protein from Pseudoalteromonas spp. identify potential biomarker: An in-silico approach. Aquatic Food Studies, 2(1), 57. https://doi.org/10.4194/afs57
  • Ji, Y. Y., & Li, Y. Q. (2010). The role of secondary structure in protein structure selection. The European Physical Journal E, Soft Matter, 32(1), 103–107. https://doi.org/10.1140/epje/i2010-10591-5
  • Jiang, J., Meng, S., Huang, S., Ruan, Y., Lu, X., Li, J. Z., Wu, N., Huang, J., Xie, Z., Liang, B., Deng, J., Zhou, B., Chen, X., Ning, C., Liao, Y., Wei, W., Lai, J., Ye, L., Wu, F., & Liang, H. (2019). Effects of Talaromyces marneffei infection on mortality of HIV/AIDS patients in southern China: A retrospective cohort study. Clinical Microbiology and Infection, 25(2), 233–241. https://doi.org/10.1016/j.cmi.2018.04.018
  • Jin, X., Guo, L., Jiang, Q., Wu, N., & Yao, S. (2022). Prediction of protein secondary structure based on an improved channel attention and multiscale convolution module. Frontiers in Bioengineering and Biotechnology, 10, 901018. https://doi.org/10.3389/fbioe.2022.901018
  • Kim, M., & Thompson, C. K. (2004). 基因的改变NIH Public Access. Brain and Language, 88(1), 1–20. https://doi.org/10.1016/j.jmb.2007.09.024.Structural
  • Kim, M., Kim, E., Lee, S., Kim, J. S., & Lee, S. (2019). New method for constant- NPT molecular dynamics. The Journal of Physical Chemistry A, 123(8), 1689–1699. https://doi.org/10.1021/acs.jpca.8b09082
  • Kini, R. M., & Evans, H. J. (1991). Molecular modeling of proteins: A strategy for energy minimization by molecular mechanics in the amber force field. Journal of Biomolecular Structure & Dynamics, 9(3), 475–488. https://doi.org/10.1080/07391102.1991.10507930
  • Kouranov, A., Xie, L., de la Cruz, J., Chen, L., Westbrook, J., Bourne, P. E., & Berman, H. M. (2006). The RCSB PDB information portal for structural genomics. Nucleic Acids Research, 34, D302–305. https://doi.org/10.1093/nar/gkj120
  • Krieger, E., & Vriend, G. (2014). YASARA View - molecular graphics for all devices - from smartphones to workstations. Bioinformatics (Oxford, England), 30(20), 2981–2982. https://doi.org/10.1093/bioinformatics/btu426
  • Krogh, A., Larsson, B., Von Heijne, G., & Sonnhammer, E. L. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305(3), 567–580. https://doi.org/10.1006/jmbi.2000.4315
  • Kudeken, N., Kawakami, K., & Saito, A. (1998). Different susceptibilities of yeasts and conidia of Penicillium marneffei to nitric oxide (NO)-mediated fungicidal activity of murine macrophages. Clinical and Experimental Immunology, 112(2), 287–293. https://doi.org/10.1046/j.1365-2249.1998.00565.x
  • Kurotani, A., Tokmakov, A. A., Sato, K. I., Stefanov, V. E., Yamada, Y., & Sakurai, T. (2019). Localization-specific distributions of protein pI in human proteome are governed by local pH and membrane charge. BMC Molecular and Cell Biology, 20(1), 1–10. https://doi.org/10.1186/s12860-019-0221-4
  • Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105–132. https://doi.org/10.1016/0022-2836(82)90515-0
  • Land, H., & Humble, M. S. (2018). Chapter 4 in biocatalytic investigations (Vol. 1685). Elsevier. https://doi.org/10.1007/978-1-4939-7366-8.
  • Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., Lund, O., & Nielsen, M. (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8(1), 424. https://doi.org/10.1186/1471-2105-8-424
  • Laskowski, R. A., Furnham, N., & Thornton, J. M. (2012). The Ramachandran plot and protein structure validation. Biomolecular forms and functions: A celebration of 50 years of the Ramachandran map (pp. 62–75). World Scientific Publishing Co Pte LTD. https://doi.org/10.1142/9789814449144_0005.
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Li, L., Chowdhary, A., Youngchim, S., & Ph, D. (2023). A global call for talaromycosis to be recognised. The Lancet Global Health, 9(11), e1618–e1622. https://doi.org/10.1016/S2214-109X(21)00350-8.A
  • Li, Y., Luo, H., Fan, J., Lan, X., Liu, G., Zhang, J., Zhong, X., Pang, Y., Wang, J., & He, Z. (2019). Genomic analysis provides insights into the transmission and pathogenicity of Talaromyces marneffei. Fungal Genetics and Biology, 130, 54–61. https://doi.org/10.1016/j.fgb.2019.05.002
  • Lin, F., Yang, Z., Qiu, Y., Zeng, W., Liu, G., & Zhang, J. (2021). Talaromyces marneffei infection in lung cancer patients with positive AIGAs: A rare case report. Infection and Drug Resistance, 14, 5005–5013. https://doi.org/10.2147/IDR.S340694
  • Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J., & Marchler-Bauer, A. (2020). CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Research, 48(D1), D265–D268. https://doi.org/10.1093/nar/gkz991
  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Mazandu, G. K., & Mulder, N. J. (2012). Function prediction and analysis of mycobacterium tuberculosis hypothetical proteins. International Journal of Molecular Sciences, 13(6), 7283–7302. https://doi.org/10.3390/ijms13067283
  • Mazumder, L., Hasan, M. R., Fatema, K., Islam, M. Z., & Tamanna, S. K. (2022). Structural and functional annotation and molecular docking analysis of a hypothetical protein from Neisseria gonorrhoeae: An in-silico approach. Biomed Research International, 2022, 1–12. https://doi.org/10.1155/2022/4302625
  • Mei, X., Li, X., Zhao, C., Liu, A., Ding, Y., Shen, C., & Li, J. (2022). The use of molecular dynamics simulation method to quantitatively evaluate the affinity between HBV antigen T cell epitope peptides and HLA-A molecules. International Journal of Molecular Sciences, 23(9), 4629. https://doi.org/10.3390/ijms23094629
  • Mellor, H., & Parker, P. J. (1998). The extended protein kinase C superfamily. The Biochemical Journal, 332 (Pt 2)(Pt 2), 281–292. https://doi.org/10.1042/bj3320281
  • Moreira, I. S., Fernandes, P. A., & Ramos, M. J. (2006). Unraveling the importance of protein-protein interaction: Application of a computational alanine-scanning mutagenesis to the study of the IgG1 streptococcal protein G (C2 Fragment) complex. The Journal of Physical Chemistry B, 110(22), 10962–10969. https://doi.org/10.1021/jp054760d
  • Nejabat, M., Soltani, F., Alibolandi, M., Nejabat, M., Abnous, K., Hadizadeh, F., & Ramezani, M. (2022). Smac peptide and doxorubicin-encapsulated nanoparticles: Design, preparation, computational molecular approach and in vitro studies on cancer cells. no. Journal of Biomolecular Structure & Dynamics, 40(2), 807–819. https://doi.org/10.1080/07391102.2020.1819420
  • Nittayananta, W. (1999). Penicilliosis marneffei: Another AIDS defining illness in Southeast Asia. Oral Diseases, 5(4), 286–293. https://doi.org/10.1111/j.1601-0825.1999.tb00091.x
  • Oany, A. R., Emran, A. A., & Jyoti, T. P. (2014). Design of an epitope-based peptide vaccine against spike protein of human coronavirus: An in silico approach. Drug Design, Development and Therapy, 8(1), 1139–1149. https://doi.org/10.2147/DDDT.S67861
  • Pan, X., Li, H., Zeng, T., Li, Z., Chen, L., Huang, T., & Cai, Y.-D. (2020). Identification of protein subcellular localization with network and functional embeddings. Frontiers in Genetics, 11, 626500. https://doi.org/10.3389/fgene.2020.626500
  • Paysan-Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B. L., Salazar, G. A., Bileschi, M. L., Bork, P., Bridge, A., Colwell, L., Gough, J., Haft, D. H., Letunić, I., Marchler-Bauer, A., Mi, H., Natale, D. A., Orengo, C. A., Pandurangan, A. P., Rivoire, C., … Bateman, A. (2023). InterPro in 2022. Nucleic Acids Research, 51(D1), D418–D427. https://doi.org/10.1093/nar/gkac993
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pierleoni, A., Martelli, P. L., Fariselli, P., & Casadio, R. (2006). BaCelLo: A balanced subcellular localization predictor. Bioinformatics (Oxford, England), 22(14), e408–416. https://doi.org/10.1093/bioinformatics/btl222
  • Pruksaphon, K., Nosanchuk, J. D., Ratanabanangkoon, K., & Youngchim, S. (2022). Talaromyces marneffei infection: Virulence, intracellular lifestyle and host defense mechanisms. Journal of Fungi, 8(2), 200. https://doi.org/10.3390/jof8020200
  • Qiu, Y., Pan, M., Zhang, J., Zhong, X., Li, Y., Zhang, H., & Li, B. (2016). Case report: Two unusual cases of human immunodeficiency virus-negative patients with Talaromyces Marneffei infection. The American Journal of Tropical Medicine and Hygiene, 95(2), 426–430. https://doi.org/10.4269/ajtmh.15-0789
  • Rabbi, M. F., Akter, S. A., Hasan, M. J., & Amin, A. (2021). In Silico characterization of a hypothetical protein from Shigella dysenteriae ATCC 12039 reveals a pathogenesis-related protein of the type-VI secretion system. Bioinformatics and Biology Insights, 15, 117793222110111. https://doi.org/10.1177/11779322211011140
  • Romero-Durana, M., Jiménez-García, B., & Fernández-Recio, J. (2020). PyDockEneRes: Per-residue decomposition of protein-protein docking energy. Bioinformatics (Oxford, England), 36(7), 2284–2285. https://doi.org/10.1093/bioinformatics/btz884
  • Sanjida, S., Islam, S. I., Mou, M. J., Sarower-E-Mahfuj, M., & Nasir, S. (2022). Functional annotation and characterization of a hypothetical protein from multidrug resistance Edwardsiella tarda revealed interaction with Proline metabolism and possible role in host-cell invasion and apoptosis in fish: An In-silico approach. International Journal of Life Sciences and Biotechnology, 5(1), 78–96. https://doi.org/10.38001/ijlsb.1032171
  • Schrödinger, LLC. (2023). The PyMOL molecular graphics system, version 2.5 schrödinger, LLC.
  • Seok, C., Baek, M., Steinegger, M., Park, H., Lee, G. R., & Won, J. (2021). Accurate protein structure prediction: What comes next? Biodesign, 9(3), 47–50. https://doi.org/10.34184/kssb.2021.9.3.47
  • Shahab, M., Khan, S. S., Zulfat, M., Bin Jardan, Y. A., Mekonnen, A. B., Bourhia, M., & Zheng, G. (2023). In silico mutagenesis-based designing of oncogenic SHP2 peptide to inhibit cancer progression. Scientific Reports, 13(1), 10088. https://doi.org/10.1038/s41598-023-37020-4
  • Shahbaaz, M., Hassan, M. I., & Ahmad, F. (2013). Functional annotation of conserved hypothetical proteins from Haemophilus influenzae Rd KW20. PLoS One. 8(12), e84263. https://doi.org/10.1371/journal.pone.0084263
  • Shrestha, B., & Diamond, M. S. (2004). Role of CD8 + T cells in control of West nile virus infection. Journal of Virology, 78(15), 8312–8321. https://doi.org/10.1128/jvi.78.15.8312-8321.2004
  • Simha, R., Briesemeister, S., Kohlbacher, O., & Shatkay, H. (2015). Protein (multi-)location prediction: Utilizing interdependencies via a generative model. Bioinformatics (Oxford, England), 31(12), i365–i374. https://doi.org/10.1093/bioinformatics/btv264
  • Singh, J., Litfin, T., Paliwal, K., Singh, J., Hanumanthappa, A. K., & Zhou, Y. (2021). SPOT-1D-Single: Improving the single-sequence-based prediction of protein secondary structure, backbone angles, solvent accessibility and half-sphere exposures using a large training set and ensembled deep learning. Bioinformatics (Oxford, England), 37(20), 3464–3472. https://doi.org/10.1093/bioinformatics/btab316
  • Sivashankari, S., & Shanmughavel, P. (2006). Functional annotation of hypothetical proteins – A review. Bioinformation, 1(8), 335–338. https://doi.org/10.6026/97320630001335
  • Solubility, P., Arakawa, T., & Timasheff, S. N. (1956). Theory of protein solubility. Methods in Enzymology, 114, 49–77. https://doi.org/10.1016/0076-6879(85)14005-X
  • Spoel, D. V. A. N. D. E. R. (2002). Hetenyi proteinScience2012.pdf (pp. 1729–1737). Y Cold Spring Harb. Lab. Press. https://doi.org/10.1110/ps.0202302.the
  • Strains, B., et al. (2019). Characterization of clinical isolates ofTalaromyces marneffei and Related Species, California, USA. Emerging Infectious Diseases, 24(5), 1765–1768. https://doi.org/10.3201/eid2509.190380
  • Supparatpinyo, K. (2012). Penicilliosis marneffei. Hunter’s Trop. Med. Emerg. Infect. Dis. Ninth Ed, 48, 644–646. https://doi.org/10.1016/B978-1-4160-4390-4.00085-0
  • Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Gable, A. L., Fang, T., Doncheva, N. T., Pyysalo, S., Bork, P., Jensen, L. J., & von Mering, C. (2023). The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, 51(D1), D638–D646. https://doi.org/10.1093/nar/gkac1000
  • Thumuluri, V., Armenteros, A. R., Almagro, J., Johansen, H. N., & Winther, O. (2022). DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nucleic Acids Research, 50, 1–7. https://doi.org/10.1093/nar/gkac278 .
  • Tokmakov, A. A., Kurotani, A., & Sato, K. I. (2021). Protein pI and Intracellular Localization. Frontiers in Molecular Biosciences, 8, 775736. https://doi.org/10.3389/fmolb.2021.775736
  • Tusnády, G. E., & Simon, I. (2001). The HMMTOP transmembrane topology prediction server. Bioinformatics (Oxford, England), 17(9), 849–850. https://doi.org/10.1093/bioinformatics/17.9.849
  • Uzoeto, H. O. (2022). Computer-aided molecular modeling and structural analysis of the human centromere protein–HIKM complex. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 1–18. https://doi.org/10.1186/s43088-022-00285-1
  • Vahisalu, T., Kollist, H., Wang, Y.-F., Nishimura, N., Chan, W.-Y., Valerio, G., Lamminmäki, A., Brosché, M., Moldau, H., Desikan, R., Schroeder, J. I., & Kangasjärvi, J. (2008). SLAC1 is required for plant guard cell S-type anion channel. Nature, 452(7186), 487–491. https://doi.org/10.1038/nature06608.SLAC1
  • van Oss, C. J., Good, R. J., & Chaudhury, M. K. (1986). Solubility of proteins. Journal of Protein Chemistry, 5(6), 385–405. https://doi.org/10.1007/BF01025572
  • Vanittanakom, N., Cooper, C. R., Fisher, M. C., & Sirisanthana, T. (2006). Penicillium marneffei infection and recent advances in the epidemiology and molecular biology aspects. Clinical Microbiology Reviews, 19(1), 95–110. https://doi.org/10.1128/CMR.19.1.95-110.2006
  • Wang, H., Zhong, H., Gao, C., Zang, J., & Yang, D. (2021). The distinct properties of the consecutive disordered regions inside or outside protein domains and their functional significance. International Journal of Molecular Sciences, 22(19), 10677. https://doi.org/10.3390/ijms221910677
  • Wang, J., Chitsaz, F., Derbyshire, M. K., Gonzales, N. R., Gwadz, M., Lu, S., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J., & Marchler-Bauer, A. (2023). The conserved domain database in 2023. Nucleic Acids Research, 51(D1), D384–D388. https://doi.org/10.1093/nar/gkac1096
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Weiying, W. (2022). Abstract: Preprint not peer reved preprint not peer ved. The Lancent Pschch, 11, 133–143.
  • Weng, G., Wang, E., Wang, Z., Liu, H., Zhu, F., Li, D., & Hou, T. (2019). HawkDock: A web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA. Nucleic Acids Research, 47(W1), W322–W330. https://doi.org/10.1093/nar/gkz397
  • Wichapong, K., Nueangaudom, A., Pianwanit, S., Sippl, W., & Kokpol, S. (2013). Identification of potential hit compounds for Dengue virus NS2B/NS3 protease inhibitors by combining virtual screening and binding free energy calculations. Tropical Biomedicine, 30(3), 388–408.
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35, W407–410. https://doi.org/10.1093/nar/gkm290
  • Woo, P. C. Y., Chong, K. T. K., Tse, H., Cai, J. J., Lau, C. C. Y., Zhou, A. C., Lau, S. K. P., & Yuen, K-y (2006). Genomic and experimental evidence for a potential sexual cycle in the pathogenic thermal dimorphic fungus Penicillium marneffei. FEBS Letters, 580(14), 3409–3416. https://doi.org/10.1016/j.febslet.2006.05.014
  • Yan, Y., Zhang, D., & Huang, S. Y. (2017). Efficient conformational ensemble generation of protein-bound peptides. Journal of Cheminformatics, 9(1), 59. https://doi.org/10.1186/s13321-017-0246-7
  • Zarezade, V., Nazeri, Z., Azizidoost, S., Cheraghzadeh, M., Babaahmadi-Rezaei, H., & Kheirollah, A. (2024). Paradoxical effect of Aβ on protein levels of ABCA1 in astrocytes, microglia, and neurons isolated from C57BL/6 mice: An in vitro and in silico study to elucidate the effect of Aβ on ABCA1 in the brain cells. Journal of Biomolecular Structure & Dynamics, 42(1), 274–287. https://doi.org/10.1080/07391102.2023.2201835
  • Zeng, W., Qiu, Y., Lu, D., Zhang, J., Zhong, X., & Liu, G. (2015). A retrospective analysis of 7 human immunodeficiency virus-negative infants infected by Penicillium marneffei. Medicine, 94(34), e1439. https://doi.org/10.1097/MD.0000000000001439
  • Zhou, P., Jin, B., Li, H., & Huang, S. Y. (2018). HPEPDOCK: A web server for blind peptide-protein docking based on a hierarchical algorithm. Nucleic Acids Research, 46(W1), W443–W450. https://doi.org/10.1093/nar/gky357

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.