68
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, biological profile and computational insights of new derivatives of benzo [B][1,4] diazepines as prospective anticancer agents for inhibiting the CDK-2 protein

, , , &
Received 17 Aug 2023, Accepted 29 Jan 2024, Published online: 12 Feb 2024

References

  • A., Amin, Z.-U., Khazir, A., Ji, B., Bhat, D., Murtaza, A. A., Hurrah, I. A., Bhat, S., Parveen, S., Nisar., & P. K., Sharma. (2023). Anti-lung cancer activity of synthesized substituted 1, 4-benzothiazines: An insight from molecular docking and experimental studies. Anti-Cancer Agents in Medicinal Chemistry, 23, 1-14. https://doi.org/10.2174/0118715206276737231103114924
  • Abd El-Karim, S. S., Syam, Y. M., El Kerdawy, A. M., & Abdelghany, T. M. (2019). New thiazol-hydrazono-coumarin hybrids targeting human cervical cancer cells: Synthesis, CDK2 inhibition, QSAR and molecular docking studies. Bioorganic Chemistry, 86, 80–96. https://doi.org/10.1016/j.bioorg.2019.01.026
  • Adam, R. W., Al-Labban, H. M., Kadhim, IN., & Aljanaby, A. A. J. (2019). Synthesis, characterization, and antibacterial activity of some new pyrimidine derivatives from chalcone derivatives. Drug Invention Today, 11(7), 1732–1739.
  • Aihara, J-I. (1999). Reduced HOMO − LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. Journal of Physical Chemistry A, 103(37), 7487–7495. https://doi.org/10.1021/jp990092i
  • Al Sheikh Ali, A., Khan, D., Naqvi, A., Al-Blewi, F. F., Rezki, N., Aouad, M. R., & Hagar, M. (2020). Design, synthesis, molecular modeling, anticancer studies, and density functional theory calculations of 4-(1, 2, 4-triazol-3-ylsulfanylmethyl)-1, 2, 3-triazole derivatives. ACS Omega, 6(1), 301–316. https://doi.org/10.1021/acsomega.0c04595
  • Anil, S. M., Shobith, R., Kiran, K. R., Swaroop, T. R., Mallesha, N., & Sadashiva, M. P. (2019). Facile synthesis of 1, 4-benzodiazepine-2, 5-diones and quinazolinones from amino acids as anti-tubercular agents. New Journal of Chemistry, 43(1), 182–187. https://doi.org/10.1039/C8NJ04936J
  • Asghar, U., Witkiewicz, A. K., Turner, N. C., & Knudsen, E. S. (2015). The history and future of targeting cyclin-dependent kinases in cancer therapy. Nature Reviews. Drug Discovery, 14(2), 130–146. https://doi.org/10.1038/nrd4504
  • Aversa, M. C., Ferlazzo, A., Giannetto, P., & Kohnke, F. H. (1986). A convenient synthesis of novel [1, 2, 4] triazolo [4, 3-a][1, 5] benzodiazepine derivatives, Synthesis. Synthesis, 1986(03), 230–231. https://doi.org/10.1055/s-1986-31628
  • Besson, A., Dowdy, S. F., & Roberts, J. M. (2008). CDK inhibitors: Cell cycle regulators and beyond. Developmental Cell, 14(2), 159–169. https://doi.org/10.1016/j.devcel.2008.01.013
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., & Sacerdoti, F. D. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (pp. 84-es)
  • Cai, D., Byth, K. F., & Shapiro, G. I. (2006). AZ703, an imidazo [1, 2-a] pyridine inhibitor of cyclin-dependent kinases 1 and 2, induces E2F-1-dependent apoptosis enhanced by depletion of cyclin-dependent kinase 9. Cancer Research, 66(1), 435–444. https://doi.org/10.1158/0008-5472.CAN-05-1769
  • Chandrashekar, D. S., Karthikeyan, S. K., Korla, P. K., Patel, H., Shovon, A. R., Athar, M., Netto, G. J., Qin, Z. S., Kumar, S., Manne, U., Creighton, C. J., & Varambally, S. (2022). UALCAN: An update to the integrated cancer data analysis platform. Neoplasia (New York, N.Y.), 25, 18–27. https://doi.org/10.1016/j.neo.2022.01.001
  • Cheng, W., Yang, Z., Wang, S., Li, Y., Wei, H., Tian, X., & Kan, Q. (2019). Recent development of CDK inhibitors: An overview of CDK/inhibitor co-crystal structures. European Journal of Medicinal Chemistry, 164, 615–639. https://doi.org/10.1016/j.ejmech.2019.01.003
  • Chin, C.-H., Chen, S.-H., Wu, H.-H., Ho, C.-W., Ko, M.-T., & Lin, C.-Y. (2014). cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 8 Suppl 4(Suppl 4), S11. https://doi.org/10.1186/1752-0509-8-S4-S11
  • Clark, A. M., & Labute, P. (2007). 2D depiction of protein − ligand complexes. Journal of Chemical Information and Modeling, 47(5), 1933–1944. https://doi.org/10.1021/ci7001473
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Demir, S., Tinmaz, F., Dege, N., & Ilhan, I. O. (2016). Vibrational spectroscopic studies, NMR, HOMO–LUMO, NLO and NBO analysis of 1-(2-nitrobenzoyl)-3, 5-diphenyl-4, 5-dihydro-1H-pyrazole with use X-ray diffractions and DFT calculations. Journal of Molecular Structure, 1108, 637–648. https://doi.org/10.1016/j.molstruc.2015.12.057
  • Diallo, A., & Prigent, C. (2011). The serine/threonine kinases that control cell cycle progression as therapeutic targets. Bulletin du Cancer, 98(11), 1335–1345. https://doi.org/10.1684/bdc.2011.1467
  • Ding, L., Cao, J., Lin, W., Chen, H., Xiong, X., Ao, H., Yu, M., Lin, J., & Cui, Q. (2020). The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer. International Journal of Molecular Sciences, 21(6), 1960. https://doi.org/10.3390/ijms21061960
  • Eldehna, W. M., El Hassab, M. A., Abo-Ashour, M. F., Al-Warhi, T., Elaasser, M. M., Safwat, N. A., Suliman, H., Ahmed, M. F., Al-Rashood, S. T., Abdel-Aziz, H. A., & El-Haggar, R. (2021). Development of isatin-thiazolo [3, 2-a] benzimidazole hybrids as novel CDK2 inhibitors with potent in vitro apoptotic anti-proliferative activity: Synthesis, biological and molecular dynamics investigations. Bioorganic Chemistry, 110, 104748. https://doi.org/10.1016/j.bioorg.2021.104748
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Grasso, S., De Sarro, G., De Sarro, A., Micale, N., Zappalà, M., Puia, G., Baraldi, M., & De Micheli, C. (1999). Synthesis and anticonvulsant activity of novel and potent 2, 3-benzodiazepine AMPA/kainate receptor antagonists. Journal of Medicinal Chemistry, 42(21), 4414–4421. https://doi.org/10.1021/jm991086d
  • Guedes, I. A., de Magalhães, C. S., & Dardenne, L. E. (2014). Receptor–ligand molecular docking. Biophysical Reviews, 6(1), 75–87. https://doi.org/10.1007/s12551-013-0130-2
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • Huey, R., Morris, G. M., & Forli, S. (2012). Using AutoDock 4 and AutoDock vina with AutoDockTools: A tutorial. The Scripps Research Institute Molecular Graphics Laboratory, 10550(92037), 1000.
  • Johnson, L. N., De Moliner, E., Brown, N. R., Song, H., Barford, D., Endicott, J. A., & Noble, M. E. M. (2002). Structural studies with inhibitors of the cell cycle regulatory kinase cyclin-dependent protein kinase 2. Pharmacology & Therapeutics, 93(2-3), 113–124. https://doi.org/10.1016/s0163-7258(02)00181-x
  • Kagami, L. P., das Neves, G. M., Timmers, L. F. S. M., Caceres, R. A., & Eifler-Lima, V. L. (2020). Geo-Measures: A PyMOL plugin for protein structure ensembles analysis. Computational Biology and Chemistry, 87, 107322. https://doi.org/10.1016/j.compbiolchem.2020.107322
  • Kamal, A., Shetti, R. V. C. R. N. C., Ramaiah, M. J., Swapna, P., Reddy, K. S., Mallareddy, A., Rao, M. P. N., Chourasia, M., Sastry, G. N., Juvekar, A., Zingde, S., Sarma, P., Pushpavalli, S. N. C. V. L., & Pal-Bhadra, M. (2011). Carbazole–pyrrolo [2, 1-c][1, 4] benzodiazepine conjugates: Design, synthesis, and biological evaluation. MedChemComm, 2(8), 780–788. https://doi.org/10.1039/c1md00072a
  • Kamal, A., Vijaya Bharathi, E., Janaki Ramaiah, M., Dastagiri, D., Surendranadha Reddy, J., Viswanath, A., Sultana, F., Pushpavalli, S. N. C. V. L., Pal-Bhadra, M., Srivastava, H. K., Narahari Sastry, G., Juvekar, A., Sen, S., & Zingde, S. (2010). Quinazolinone linked pyrrolo [2, 1-c][1, 4] benzodiazepine (PBD) conjugates: Design, synthesis and biological evaluation as potential anticancer agents. Bioorganic & Medicinal Chemistry, 18(2), 526–542. https://doi.org/10.1016/j.bmc.2009.12.015
  • Kontopidis, G., McInnes, C., Pandalaneni, S. R., McNae, I., Gibson, D., Mezna, M., Thomas, M., Wood, G., Wang, S., Walkinshaw, M. D., & Fischer, P. M. (2006). Differential binding of inhibitors to active and inactive CDK2 provides insights for drug design. Chemistry & Biology, 13(2), 201–211. https://doi.org/10.1016/j.chembiol.2005.11.011
  • Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S. L., Jagodnik, K. M., Lachmann, A., McDermott, M. G., Monteiro, C. D., Gundersen, G. W., & Ma’ayan, A. (2016). Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research, 44(W1), W90–W97. https://doi.org/10.1093/nar/gkw377
  • Kumar, C. P., Reddy, T. S., Mainkar, P. S., Bansal, V., Shukla, R., Chandrasekhar, S., & Hügel, H. M. (2016). Synthesis and biological evaluation of 5, 10-dihydro-11H-dibenzo [b, e][1, 4] diazepin-11-one structural derivatives as anti-cancer and apoptosis inducing agents. European Journal of Medicinal Chemistry, 108, 674–686. https://doi.org/10.1016/j.ejmech.2015.12.007
  • Legler, C. R., Brown, N. R., Dunbar, R. A., Harness, M. D., Nguyen, K., Oyewole, O., & Collier, W. B. (2015). Scaled quantum mechanical scale factors for vibrational calculations using alternate polarized and augmented basis sets with the B3LYP density functional calculation model. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 145, 15–24. https://doi.org/10.1016/j.saa.2015.02.103
  • Lipinski, C. A. (2004). Lead-and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Maaser, K., Sutter, A. P., Krahn, A., Höpfner, M., Grabowski, P., & Scherübl, H. (2004). Cell cycle-related signaling pathways modulated by peripheral benzodiazepine receptor ligands in colorectal cancer cells. Biochemical and Biophysical Research Communications, 324(2), 878–886. https://doi.org/10.1016/j.bbrc.2004.09.127
  • Malumbres, M., & Barbacid, M. (2009). Cell cycle, CDKs and cancer: A changing paradigm. Nature Reviews. Cancer, 9(3), 153–166. https://doi.org/10.1038/nrc2602
  • Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Miduturu, C. V., Deng, X., Kwiatkowski, N., Yang, W., Brault, L., Filippakopoulos, P., Chung, E., Yang, Q., Schwaller, J., Knapp, S., King, R. W., Lee, J.-D., Herrgard, S., Zarrinkar, P., & Gray, N. S. (2011). High-throughput kinase profiling: A more efficient approach toward the discovery of new kinase inhibitors. Chemistry & Biology, 18(7), 868–879. https://doi.org/10.1016/j.chembiol.2011.05.010
  • Mohan, N., & Suresh, C. H. (2014). A molecular electrostatic potential analysis of hydrogen, halogen, and dihydrogen bonds. The Journal of Physical Chemistry. A, 118(9), 1697–1705. https://doi.org/10.1021/jp4115699
  • Mughal, M. J., Bhadresha, K., & Kwok, H. F. (2023). CDK inhibitors from past to present: A new wave of cancer therapy. In Seminars in Cancer Biology (Vol. 88, pp. 106–122). Academic Press.
  • Padma, V. V. (2015). An overview of targeted cancer therapy. BioMedicine, 5(4), 19. https://doi.org/10.7603/s40681-015-0019-4
  • Pan, B., Zhong, W., Deng, Z., Lai, C., Chu, J., Jiao, G., Liu, J., & Zhou, Q. (2016). Inhibition of prostate cancer growth by solanine requires the suppression of cell cycle proteins and the activation of ROS/P38 signaling pathway. Cancer Medicine, 5(11), 3214–3222. https://doi.org/10.1002/cam4.916
  • Peyressatre, M., Prével, C., Pellerano, M., & Morris, M. C. (2015). Targeting cyclin-dependent kinases in human cancers: From small molecules to peptide inhibitors. Cancers, 7(1), 179–237. https://doi.org/10.3390/cancers7010179
  • Rahman, K. M., Jackson, P. J. M., James, C. H., Basu, B. P., Hartley, J. A., de la Fuente, M., Schatzlein, A., Robson, M., Pedley, R. B., Pepper, C., Fox, K. R., Howard, P. W., & Thurston, D. E. (2013). GC-targeted C8-linked pyrrolobenzodiazepine–biaryl conjugates with femtomolar in vitro cytotoxicity and in vivo antitumor activity in mouse models. Journal of Medicinal Chemistry, 56(7), 2911–2935. https://doi.org/10.1021/jm301882a
  • Rahman, A. A. H. A., Nassar, I. F., Shaban, A. K. F., El-Kady, D. S., Awad, H. M., & El Sayed, W. A. (2019). Synthesis, docking studies into CDK-2 and anticancer activity of new derivatives based pyrimidine scaffold and their derived glycosides. Mini Reviews in Medicinal Chemistry, 19(13), 1093–1110. https://doi.org/10.2174/1389557519666190312165717
  • S. Release. (2021). 1: Desmond Molecular Dynamics System, DE Shaw Research., Maestro-Desmond Interoperability Tools, Schrödinger. 2023.
  • Sabe, V. T., Ntombela, T., Jhamba, L. A., Maguire, G. E. M., Govender, T., Naicker, T., & Kruger, H. G. (2021). Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. European Journal of Medicinal Chemistry, 224, 113705. https://doi.org/10.1016/j.ejmech.2021.113705
  • Saifi, I., Bhat, B. A., Hamdani, S. S., Bhat, U. Y., Lobato-Tapia, C. A., Mir, M. A., Dar, T. U. H., & Ganie, S. A. (2023). Artificial intelligence and cheminformatics tools: A contribution to the drug development and chemical science. Journal of Biomolecular Structure & Dynamics, 6, 1–19. https://doi.org/10.1080/07391102.2023.2234039
  • Sajjan, V. P., Anigol, L. B., Gurubasavaraj, P. M., Patil, D., Patil, P. S., Gummagol, N. B., Quah, C. K., Wong, Q. A., & Celik, I. (2023). New2-((2-(2, 4-dinitrophenyl) hydrazineeylidene) derivatives: Design, synthesis, in silico, and in vitro anticancer studies. Journal of Biomolecular Structure and Dynamics, 41(21), 11681–11699.
  • Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2021). Cancer statistics. CA: A Cancer Journal for Clinicians, 71(1), 7–33. https://doi.org/10.3322/caac.21654
  • Tadesse, S., Caldon, E. C., Tilley, W., & Wang, S. (2018). Cyclin-dependent kinase 2 inhibitors in cancer therapy: An update. Journal of Medicinal Chemistry, 62(9), 4233–4251. https://doi.org/10.1021/acs.jmedchem.8b01469
  • Tirado-Rives, J., & Jorgensen, W. L. (2008). Performance of B3LYP density functional methods for a large set of organic molecules. Journal of Chemical Theory and Computation, 4(2), 297–306. https://doi.org/10.1021/ct700248k
  • Tolu-Bolaji, O. O., Sojinu, S. O., Okedere, A. P., & Ajani, O. O. (2022). A review on the chemistry and pharmacological properties of benzodiazepine motifs in drug design. Arab Journal of Basic and Applied Sciences, 29(1), 287–306. https://doi.org/10.1080/25765299.2022.2117677
  • Topcul, M., & Cetin, I. (2014). Endpoint of cancer treatment: Targeted therapies. Asian Pacific Journal of Cancer Prevention, 15(11), 4395–4403. https://doi.org/10.7314/apjcp.2014.15.11.4395
  • Van Meerloo, J., Kaspers, G. J. L., & Cloos, J. (2011). Cell sensitivity assays: The MTT assay, Cancer cell culture: Methods and protocols. 237–245.
  • Verma, D., Kumar, P., Narasimhan, B., Ramasamy, K., Mani, V., Mishra, R. K., & Majeed, A. B. A. (2019). Synthesis, antimicrobial, anticancer and QSAR studies of 1-[4-(substituted phenyl)-2-(substituted phenyl azomethyl)-benzo [b]-[1, 4] diazepin-1-yl]-2-substituted phenylaminoethanones. Arabian Journal of Chemistry, 12(8), 2882–2896. https://doi.org/10.1016/j.arabjc.2015.06.010
  • Wang, L.-Z., Li, X.-Q., & An, Y.-S. (2015). 1, 5-Benzodiazepine derivatives as potential antimicrobial agents: Design, synthesis, biological evaluation, and structure–activity relationships. Organic & Biomolecular Chemistry, 13(19), 5497–5509. https://doi.org/10.1039/c5ob00655d
  • Wang, S., Liu, Y., Feng, Y., Zhang, J., Swinnen, J., Li, Y., & Ni, Y. (2019). A review on curability of cancers: More efforts for novel therapeutic options are needed. Cancers, 11(11), 1782. https://doi.org/10.3390/cancers11111782
  • Zhang, M., Zhang, L., Hei, R., Li, X., Cai, H., Wu, X., Zheng, Q., & Cai, C. (2021). CDK inhibitors in cancer therapy, an overview of recent development. American Journal of Cancer Research, 11(5), 1913.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.