134
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Identification of characteristic genes and herbal compounds for the treatment of psoriasis based on machine learning and molecular dynamics simulation

ORCID Icon, , , , &
Received 05 Apr 2023, Accepted 14 Jul 2023, Published online: 12 Feb 2024

References

  • Alonso, A., Julià, A., Vinaixa, M., Domènech, E., Fernández-Nebro, A., Cañete, J. D., Ferrándiz, C., Tornero, J., Gisbert, J. P., Nos, P., Casbas, A. G., Puig, L., González-Álvaro, I., Pinto-Tasende, J. A., Blanco, R., Rodríguez, M. A., Beltran, A., Correig, X., & Marsal, S. (2016). Urine metabolome profiling of immune-mediated inflammatory diseases. BMC Medicine, 14(1), 133. https://doi.org/10.1186/s12916-016-0681-8
  • Ambrożewicz, E., Wójcik, P., Wroński, A., Łuczaj, W., Jastrząb, A., Žarković, N., & Skrzydlewska, E. (2018). Pathophysiological alterations of redox signaling and endocannabinoid system in granulocytes and plasma of psoriatic patients. Cells, 7(10), 159. https://doi.org/10.3390/cells7100159
  • Armstrong, A. W., & Read, C. (2020). Pathophysiology, clinical presentation, and treatment of psoriasis: A review. JAMA, 323(19), 1945–1960. https://doi.org/10.1001/jama.2020.4006
  • Aromolaran, O., Aromolaran, D., Isewon, I., & Oyelade, J. (2021). Machine learning approach to gene essentiality prediction: A review. Briefings in Bioinformatics, 22(5), bbab128. https://doi.org/10.1093/bib/bbab128
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, IN., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Boniface, K., Bernard, F. X., Garcia, M., Gurney, A. L., Lecron, J. C., & Morel, F. (2005). IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. Journal of Immunology (Baltimore, Md.: 1950), 174(6), 3695–3702. https://doi.org/10.4049/jimmunol.174.6.3695
  • Budak, C., Mençik, V., & Gider, V. (2023). Determining similarities of COVID-19 - lung cancer drugs and affinity binding mode analysis by graph neural network-based GEFA method. Journal of Biomolecular Structure & Dynamics, 41(2), 659–671. https://doi.org/10.1080/07391102.2021.2010601
  • Busfield, S. J., Comrack, C. A., Yu, G., Chickering, T. W., Smutko, J. S., Zhou, H., Leiby, K. R., Holmgren, L. M., Gearing, D. P., & Pan, Y. (2000). Identification and gene organization of three novel members of the IL-1 family on human chromosome 2. Genomics, 66(2), 213–216. https://doi.org/10.1006/geno.2000.6184
  • Chen, H., & He, Y. (2022). Machine learning approaches in traditional Chinese medicine: A systematic review. The American Journal of Chinese Medicine, 50(1), 91–131. https://doi.org/10.1142/S0192415X22500045
  • Chen, J., Zhu, Z., Li, Q., Lin, Y., Dang, E., Meng, H., Sha, N., Bai, H., Wang, G., An, S., & Shao, S. (2021). Neutrophils enhance cutaneous vascular dilation and permeability to aggravate psoriasis by releasing matrix metallopeptidase 9. The Journal of Investigative Dermatology, 141(4), 787–799. https://doi.org/10.1016/j.jid.2020.07.028
  • Chen, Y. G., & Hur, S. (2022). Cellular origins of dsRNA, their recognition and consequences. Nature Reviews. Molecular Cell Biology, 23(4), 286–301. https://doi.org/10.1038/s41580-021-00430-1
  • Cheng Xue, L. C., Fangrong, L., Xiao, C., & Xing, Z. (2023). Study on Medication Law of TCM Compounds for Treatment of Psoriasis Based on National Patents. Chinese Journal of Information on TCM, 30, 62–67.
  • Chiricozzi, A., Romanelli, P., Volpe, E., Borsellino, G., & Romanelli, M. (2018). Scanning the Immunopathogenesis of Psoriasis. International Journal of Molecular Sciences, 19(1), 179. https://doi.org/10.3390/ijms19010179
  • Cibrian, D., Saiz, M. L., de la Fuente, H., Sánchez-Díaz, R., Moreno-Gonzalo, O., Jorge, I., Ferrarini, A., Vázquez, J., Punzón, C., Fresno, M., Vicente-Manzanares, M., Daudén, E., Fernández-Salguero, P. M., Martín, P., & Sánchez-Madrid, F. (2016). CD69 controls the uptake of L-tryptophan through LAT1-CD98 and AhR-dependent secretion of IL-22 in psoriasis. Nature Immunology, 17(8), 985–996. https://doi.org/10.1038/ni.3504
  • Cronstein, B. N., & Sitkovsky, M. (2017). Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nature Reviews. Rheumatology, 13(1), 41–51. https://doi.org/10.1038/nrrheum.2016.178
  • Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–w364. https://doi.org/10.1093/nar/gkz382
  • Dan, W., Liu, J., Guo, X., Zhang, B., Qu, Y., & He, Q. (2020). Study on medication rules of traditional chinese medicine against antineoplastic drug-induced cardiotoxicity based on network pharmacology and data mining. Evidence-Based Complementary and Alternative Medicine, 2020, 1–15. https://doi.org/10.1155/2020/7498525
  • Dan, W., Wu, C., Xue, C., Liu, J., Guo, X., & Lian, Y. (2022). Rules of Chinese herbal intervention of radiation pneumonia based on network pharmacology and data mining. Evidence-Based Complementary and Alternative Medicine: ECAM, 2022, 7313864–7313813. https://doi.org/10.1155/2022/7313864
  • David, M., Akerman, L., Ziv, M., Kadurina, M., Gospodinov, D., Pavlotsky, F., Yankova, R., Kouzeva, V., Ramon, M., Silverman, M. H., & Fishman, P. (2012). Treatment of plaque-type psoriasis with oral CF101: Data from an exploratory randomized phase 2 clinical trial. Journal of the European Academy of Dermatology and Venereology: JEADV, 26(3), 361–367. https://doi.org/10.1111/j.1468-3083.2011.04078.x
  • Di, T. T., Ruan, Z. T., Zhao, J. X., Wang, Y., Liu, X., Wang, Y., & Li, P. (2016). Astilbin inhibits Th17 cell differentiation and ameliorates imiquimod-induced psoriasis-like skin lesions in BALB/c mice via Jak3/Stat3 signaling pathway. International Immunopharmacology, 32, 32–38. https://doi.org/10.1016/j.intimp.2015.12.035
  • Di, T., Zhai, C., Zhao, J., Wang, Y., Chen, Z., & Li, P. (2021). Taxifolin inhibits keratinocyte proliferation and ameliorates imiquimod-induced psoriasis-like mouse model via regulating cytoplasmic phospholipase A2 and PPAR-γ pathway. International Immunopharmacology, 99, 107900. https://doi.org/10.1016/j.intimp.2021.107900
  • Dong, J., Feng, T., Thapa-Chhetry, B., Cho, B. G., Shum, T., Inwald, D. P., Newth, C. J. L., & Vaidya, V. U. (2021). Machine learning model for early prediction of acute kidney injury (AKI) in pediatric critical care. Critical Care (London, England), 25(1), 288. https://doi.org/10.1186/s13054-021-03724-0
  • Fang, S., Dong, L., Liu, L., Guo, J., Zhao, L., Zhang, J., Bu, D., Liu, X., Huo, P., Cao, W., Dong, Q., Wu, J., Zeng, X., Wu, Y., & Zhao, Y. (2021). HERB: A high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Research, 49(D1), D1197–d1206. https://doi.org/10.1093/nar/gkaa1063
  • Gallo, K., Goede, A., Preissner, R., & Gohlke, B. O. (2022). SuperPred 3.0: Drug classification and target prediction-a machine learning approach. Nucleic Acids Research, 50(W1), W726–W731. https://doi.org/10.1093/nar/gkac297
  • Gao, Y., Yi, X., & Ding, Y. (2017). Combined transcriptomic analysis revealed AKR1B10 Played an important role in psoriasis through the dysregulated lipid pathway and overproliferation of keratinocyte. BioMed Research International, 2017, 8717369–8717310. https://doi.org/10.1155/2017/8717369
  • Gider, V., & Budak, C. (2022). Instruction of molecular structure similarity and scaffolds of drugs under investigation in ebola virus treatment by atom-pair and graph network: A combination of favipiravir and molnupiravir. Computational Biology and Chemistry, 101, 107778. https://doi.org/10.1016/j.compbiolchem.2022.107778
  • Gomez, E. C., Menendez, L., & Frost, P. (1979). Efficacy of mycophenolic acid for the treatment of psoriasis. Journal of the American Academy of Dermatology, 1(6), 531–537. https://doi.org/10.1016/s0190-9622(79)80097-3
  • Grän, F., Kerstan, A., Serfling, E., Goebeler, M., & Muhammad, K. (2020). Current developments in the immunology of psoriasis. Yale Journal of Biology and Medicine, 93, 97–110.
  • Griffiths, C. E. M., Armstrong, A. W., Gudjonsson, J. E., & Barker, J. (2021). Psoriasis. Lancet (London, England), 397(10281), 1301–1315. https://doi.org/10.1016/S0140-6736(20)32549-6
  • Günther, F., & Fritsch, S. (2010). Neuralnet: Training of neural networks. The R Journal, 2(1), 30.
  • Harden, J. L., Lewis, S. M., Lish, S. R., Suárez-Fariñas, M., Gareau, D., Lentini, T., Johnson-Huang, L. M., Krueger, J. G., & Lowes, M. A. (2016). The tryptophan metabolism enzyme L-kynureninase is a novel inflammatory factor in psoriasis and other inflammatory diseases. The Journal of Allergy and Clinical Immunology, 137(6), 1830–1840. https://doi.org/10.1016/j.jaci.2015.09.055
  • Herman, A., & Herman, A. P. (2016). Topically used herbal products for the treatment of psoriasis – Mechanism of action, drug delivery, clinical studies. Planta Medica, 82(17), 1447–1455. https://doi.org/10.1055/s-0042-115177
  • Hsin, K. Y., Ghosh, S., & Kitano, H. (2013). Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PloS One, 8(12), e83922. https://doi.org/10.1371/journal.pone.0083922
  • Huang, Y. Z., Zheng, Y. X., Zhou, Y., Xu, F., Cui, Y. Z., Chen, X. Y., Wang, Z. Y., Yan, B. X., Zheng, M., & Man, X. Y. (2022). OAS1, OAS2, and OAS3 contribute to epidermal keratinocyte proliferation by regulating cell cycle and augmenting IFN-1–induced Jak1–signal transducer and activator of transcription 1 phosphorylation in psoriasis. The Journal of Investigative Dermatology, 142(10), 2635–2645.e9. https://doi.org/10.1016/j.jid.2022.02.018
  • Infantino, V., Iacobazzi, V., Menga, A., Avantaggiati, M. L., & Palmieri, F. (2014). A key role of the mitochondrial citrate carrier (SLC25A1) in TNFα- and IFNγ-triggered inflammation. Biochimica et Biophysica Acta, 1839(11), 1217–1225. https://doi.org/10.1016/j.bbagrm.2014.07.013
  • Iversen, O. J., Lysvand, H., & Slupphaug, G. (2017). Pso p27, a SERPINB3/B4-derived protein, is most likely a common autoantigen in chronic inflammatory diseases. Clinical Immunology (Orlando, Fla.), 174, 10–17. https://doi.org/10.1016/j.clim.2016.11.006
  • Kamiya, K., Kishimoto, M., Sugai, J., Komine, M., & Ohtsuki, M. (2019). Risk factors for the development of psoriasis. International Journal of Molecular Sciences, 20(18), 4347.
  • Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). kernlab-an S4 package for kernel methods in R. Journal of Statistical Software, 11, 1–20.
  • Keating, G. M. (2017). Apremilast: A review in psoriasis and psoriatic arthritis. Drugs, 77(4), 459–472. https://doi.org/10.1007/s40265-017-0709-1
  • Kuhn, M. (2015). Caret: Classification and regression training. ASCL, 1505, 1003.
  • Kwock, J. T., Handfield, C., Suwanpradid, J., Hoang, P., McFadden, M. J., Labagnara, K. F., Floyd, L., Shannon, J., Uppala, R., Sarkar, M. K., Gudjonsson, J. E., Corcoran, D. L., Lazear, H. M., Sempowski, G., Horner, S. M., & MacLeod, A. S. (2020). IL-27 signaling activates skin cells to induce innate antiviral proteins and protects against Zika virus infection. Science Advances, 6(14), eaay3245. https://doi.org/10.1126/sciadv.aay3245
  • Lebwohl, M. G., Stein Gold, L., Strober, B., Papp, K. A., Armstrong, A. W., Bagel, J., Kircik, L., Ehst, B., Hong, H. C.-H., Soung, J., Fromowitz, J., Guenthner, S., Piscitelli, S. C., Rubenstein, D. S., Brown, P. M., Tallman, A. M., & Bissonnette, R. (2021). Phase 3 trials of tapinarof cream for plaque psoriasis. The New England Journal of Medicine, 385(24), 2219–2229. https://doi.org/10.1056/NEJMoa2103629
  • Lee, S. J., & Jia, Y. (2015). The effect of bioactive compounds in tea on lipid metabolism and obesity through regulation of peroxisome proliferator-activated receptors. Current Opinion in Lipidology, 26(1), 3–9. https://doi.org/10.1097/MOL.0000000000000145
  • Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., & Storey, J. D. J. B. (2012). The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics (Oxford, England), 28(6), 882–883. https://doi.org/10.1093/bioinformatics/bts034
  • Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest, 2 18–22.
  • Luo, Y., Luo, Y., Chang, J., Xiao, Z., & Zhou, B. (2020). Identification of candidate biomarkers and pathways associated with psoriasis using bioinformatics analysis. Hereditas, 157(1), 30. https://doi.org/10.1186/s41065-020-00141-1
  • Madonna, S., Girolomoni, G., Dinarello, C. A., & Albanesi, C. (2019). The significance of IL-36 hyperactivation and IL-36R targeting in psoriasis. International Journal of Molecular Sciences, 20(13), 3318.
  • Mahil, S. K., Catapano, M., Di Meglio, P., Dand, N., Ahlfors, H., Carr, I. M., Smith, C. H., Trembath, R. C., Peakman, M., Wright, J., Ciccarelli, F. D., Barker, J. N., & Capon, F. (2017). An analysis of IL-36 signature genes and individuals with IL1RL2 knockout mutations validates IL-36 as a psoriasis therapeutic target. Science Translational Medicine, 9(411), eaan2514. https://doi.org/10.1126/scitranslmed.aan2514
  • Mao, J., & Ma, X. (2022). Bioinformatics identification of ferroptosis-associated biomarkers and therapeutic compounds in psoriasis. Journal of Oncology, 2022, 3818216–3818215. () https://doi.org/10.1155/2022/3818216
  • McKenzie, R. C., Oda, Y., Szepietowski, J. C., Behne, M. J., & Mauro, T. (2003). Defective cyclic guanosine monophosphate-gated calcium channels and the pathogenesis of psoriasis. Acta Dermato-Venereologica, 83(6), 414–418. https://doi.org/10.1080/00015550310014726
  • Mee, J. B., Johnson, C. M., Morar, N., Burslem, F., & Groves, R. W. (2007). The psoriatic transcriptome closely resembles that induced by interleukin-1 in cultured keratinocytes: Dominance of innate immune responses in psoriasis. The American Journal of Pathology, 171(1), 32–42. https://doi.org/10.2353/ajpath.2007.061067
  • Meng, S., Lin, Z., Wang, Y., Wang, Z., Li, P., & Zheng, Y. (2018). Psoriasis therapy by Chinese medicine and modern agents. Chinese Medicine, 13(1), 16. https://doi.org/10.1186/s13020-018-0174-0
  • Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C., & Lin, C. (2021). e1071: Misc functions of the department of statistics, probability theory group (Formerly: E1071). TU Wien, [R Package Version 1.7-9],
  • Mitra, A., Raychaudhuri, S. K., & Raychaudhuri, S. P. (2012). IL-22 induced cell proliferation is regulated by PI3K/Akt/mTOR signaling cascade. Cytokine, 60(1), 38–42. https://doi.org/10.1016/j.cyto.2012.06.316
  • Mrass, P., Rendl, M., Mildner, M., Gruber, F., Lengauer, B., Ballaun, C., Eckhart, L., & Tschachler, E. (2004). Retinoic acid increases the expression of p53 and proapoptotic caspases and sensitizes keratinocytes to apoptosis: A possible explanation for tumor preventive action of retinoids. Cancer Research, 64(18), 6542–6548. https://doi.org/10.1158/0008-5472.CAN-04-1129
  • Newby, A. C., Holmquist, C. A., Illingworth, J., & Pearson, J. D. (1983). The control of adenosine concentration in polymorphonuclear leucocytes, cultured heart cells and isolated perfused heart from the rat. The Biochemical Journal, 214(2), 317–323. https://doi.org/10.1042/bj2140317
  • Nicora, G., Rios, M., Abu-Hanna, A., & Bellazzi, R. (2022). Evaluating pointwise reliability of machine learning prediction. Journal of Biomedical Informatics, 127, 103996. https://doi.org/10.1016/j.jbi.2022.103996
  • Nogales, C., Mamdouh, Z. M., List, M., Kiel, C., Casas, A. I., & Schmidt, H. (2022). Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends in Pharmacological Sciences, 43(2), 136–150. https://doi.org/10.1016/j.tips.2021.11.004
  • Parisi, R., Iskandar, I. Y. K., Kontopantelis, E., Augustin, M., Griffiths, C. E. M., & Ashcroft, D. M. (2020). National, regional, and worldwide epidemiology of psoriasis: Systematic analysis and modelling study. BMJ (Clinical Research ed.), 369, m1590. https://doi.org/10.1136/bmj.m1590
  • Ramot, Y., Mastrofrancesco, A., Camera, E., Desreumaux, P., Paus, R., & Picardo, M. (2015). The role of PPARγ-mediated signalling in skin biology and pathology: New targets and opportunities for clinical dermatology. Experimental Dermatology, 24(4), 245–251. https://doi.org/10.1111/exd.12647
  • Rashmi, R., Rao, K. S., & Basavaraj, K. H. (2009). A comprehensive review of biomarkers in psoriasis. Clinical and Experimental Dermatology, 34(6), 658–663. https://doi.org/10.1111/j.1365-2230.2009.03410.x
  • Rath, O., & Kozielski, F. (2012). Kinesins and cancer. Nature Reviews. Cancer, 12(8), 527–539. https://doi.org/10.1038/nrc3310
  • Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), e47-e47. https://doi.org/10.1093/nar/gkv007
  • Sevimoglu, T., Turanli, B., Bereketoglu, C., Arga, K. Y., & Karadag, A. S. (2018). Systems biomarkers in psoriasis: Integrative evaluation of computational and experimental data at transcript and protein levels. Gene, 647, 157–163. https://doi.org/10.1016/j.gene.2018.01.033
  • Shi, H. J., Zhou, H., Ma, A. L., Wang, L., Gao, Q., Zhang, N., Song, H. B., Bo, K. P., & Ma, W. (2019). Oxymatrine therapy inhibited epidermal cell proliferation and apoptosis in severe plaque psoriasis. The British Journal of Dermatology, 181(5), 1028–1037. https://doi.org/10.1111/bjd.17852
  • Sivaprasad, U., Kinker, K. G., Ericksen, M. B., Lindsey, M., Gibson, A. M., Bass, S. A., Hershey, N. S., Deng, J., Medvedovic, M., & Khurana Hershey, G. K. (2015). SERPINB3/B4 contributes to early inflammation and barrier dysfunction in an experimental murine model of atopic dermatitis. The Journal of Investigative Dermatology, 135(1), 160–169. https://doi.org/10.1038/jid.2014.353
  • Smirnova, A., Wincent, E., Vikström Bergander, L., Alsberg, T., Bergman, J., Rannug, A., & Rannug, U. (2016). Evidence for new light-independent pathways for generation of the endogenous aryl hydrocarbon receptor agonist FICZ. Chemical Research in Toxicology, 29(1), 75–86. https://doi.org/10.1021/acs.chemrestox.5b00416
  • Sobolev, V., Nesterova, A., Soboleva, A., Mezentsev, A., Dvoriankova, E., Piruzyan, A., Denisova, E., Melnichenko, O., & Korsunskaya, I. (2021). Analysis of PPARγ signaling activity in psoriasis. International Journal of Molecular Sciences, 22(16), 8603.
  • Su, W., Zhao, Y., Wei, Y., Zhang, X., Ji, J., & Yang, S. (2021). Exploring the pathogenesis of psoriasis complicated with atherosclerosis via microarray data analysis. Frontiers in Immunology, 12, 667690. https://doi.org/10.3389/fimmu.2021.667690
  • Su, Y., Qin, W., Wu, L., Yang, B., Wang, Q., Kuang, H., & Cheng, G. (2021). A review of Chinese medicine for the treatment of psoriasis: Principles, methods and analysis. Chinese Medicine, 16(1), 138. https://doi.org/10.1186/s13020-021-00550-y
  • Su, Y., Zhang, F., Wu, L., Kuang, H., Wang, Q., & Cheng, G. (2022). Total withanolides ameliorates imiquimod-induced psoriasis-like skin inflammation. Journal of Ethnopharmacology, 285, 114895. https://doi.org/10.1016/j.jep.2021.114895
  • Tischer, J., & Gergely, F. (2019). Anti-mitotic therapies in cancer. The Journal of Cell Biology, 218(1), 10–11. https://doi.org/10.1083/jcb.201808077
  • Veldhoen, M., Hirota, K., Christensen, J., O'Garra, A., & Stockinger, B. (2009). Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. The Journal of Experimental Medicine, 206(1), 43–49. https://doi.org/10.1084/jem.20081438
  • Wang, M., Wang, Y., Zhang, M., Duan, Q., Chen, C., Sun, Q., Liu, M., Zheng, Y., & Shao, Y. (2022). Kynureninase contributes to the pathogenesis of psoriasis through pro-inflammatory effect. Journal of Cellular Physiology, 237(1), 1044–1056. https://doi.org/10.1002/jcp.30587
  • Wang, W., Wang, H., Yuhai, Chasuna, & Bagenna. (2019). Astilbin reduces ROS accumulation and VEGF expression through Nrf2 in psoriasis-like skin disease, Biological Research, 52 (1), 49. https://doi.org/10.1186/s40659-019-0255-2
  • Wang, X., Kaiser, H., Kvist-Hansen, A., McCauley, B. D., Skov, L., Hansen, P. R., & Becker, C. (2022). IL-17 pathway members as potential biomarkers of effective systemic treatment and cardiovascular disease in patients with moderate-to-severe psoriasis. International Journal of Molecular Sciences, 23(1),555.
  • Wang, X., Shen, Y., Wang, S., Li, S., Zhang, W., Liu, X., Lai, L., Pei, J., & Li, H. (2017). PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Research, 45(W1), W356–w360. https://doi.org/10.1093/nar/gkx374
  • Wolk, K., Haugen, H. S., Xu, W., Witte, E., Waggie, K., Anderson, M., Vom Baur, E., Witte, K., Warszawska, K., Philipp, S., Johnson-Leger, C., Volk, H. D., Sterry, W., & Sabat, R. (2009). IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-gamma are not. Journal of Molecular Medicine (Berlin, Germany), 87(5), 523–536. https://doi.org/10.1007/s00109-009-0457-0
  • Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan, L., Fu, X., Liu, S., Bo, X., & Yu, G. (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Cambridge (Mass.)), 2(3), 100141. https://doi.org/10.1016/j.xinn.2021.100141
  • Xiang, X., Tu, C., Li, Q., Wang, W., Huang, X., Zhao, Z., Xiong, H., & Mei, Z. (2020). Oxymatrine ameliorates imiquimod-induced psoriasis pruritus and inflammation through inhibiting heat shock protein 90 and heat shock protein 60 expression in keratinocytes. Toxicology and Applied Pharmacology, 405, 115209. https://doi.org/10.1016/j.taap.2020.115209
  • Xu, B., Dan, W., Zhang, X., Wang, H., Cao, L., Li, S., & Li, J. (2022). Gene differential expression and interaction networks illustrate the biomarkers and molecular biological mechanisms of unsaponifiable matter in kanglaite injection for pancreatic ductal adenocarcinoma. Biomed Research International. 2022, 6229462. https://doi.org/10.1155/2022/6229462
  • Xu, H. Y., Zhang, Y. Q., Liu, Z. M., Chen, T., Lv, C. Y., Tang, S. H., Zhang, X. B., Zhang, W., Li, Z. Y., Zhou, R. R., Yang, H. J., Wang, X. J., & Huang, L. Q. (2019). ETCM: An encyclopaedia of traditional Chinese medicine. Nucleic Acids Research, 47(D1), D976–d982. https://doi.org/10.1093/nar/gky987
  • Xu, M., Deng, J., Xu, K., Zhu, T., Han, L., Yan, Y., Yao, D., Deng, H., Wang, D., Sun, Y., Chang, C., Zhang, X., Dai, J., Yue, L., Zhang, Q., Cai, X., Zhu, Y., Duan, H., Liu, Y., … Yu, X. (2019). In-depth serum proteomics reveals biomarkers of psoriasis severity and response to traditional Chinese medicine. Theranostics, 9(9), 2475–2488. https://doi.org/10.7150/thno.31144
  • Xue, X., Yu, J., Li, C., Wang, F., Guo, Y., Li, Y., & Shi, H. (2022). Full-length transcriptome sequencing analysis of differentially expressed genes and pathways after treatment of psoriasis with oxymatrine. Frontiers in Pharmacology, 13, 889493. https://doi.org/10.3389/fphar.2022.889493
  • Yi, H. W., Lu, X. M., Fang, F., Wang, J., & Xu, Q. (2008). Astilbin inhibits the adhesion of T lymphocytes via decreasing TNF-alpha and its associated MMP-9 activity and CD44 expression. International Immunopharmacology, 8(10), 1467–1474. https://doi.org/10.1016/j.intimp.2008.06.006
  • Yue, Q., Li, Z., Zhang, Q., Jin, Q., Zhang, X., & Jin, G. (2022). Identification of novel hub genes associated with psoriasis using integrated bioinformatics analysis. International Journal of Molecular Sciences, 23(23), 15286. https://doi.org/10.3390/ijms232315286
  • Zhang, C., Xu, Q., Tan, X., Meng, L., Wei, G., Liu, Y., & Zhang, C. (2017). Astilbin decreases proliferation and improves differentiation in HaCaT keratinocytes. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 93, 713–720. https://doi.org/10.1016/j.biopha.2017.05.127
  • Zhou, H., Shi, H. J., Yang, J., Chen, W. G., Xia, L., Song, H. B., Bo, K. P., & Ma, W. (2017). Efficacy of oxymatrine for treatment and relapse suppression of severe plaque psoriasis: Results from a single-blinded randomized controlled clinical trial. The British Journal of Dermatology, 176(6), 1446–1455. https://doi.org/10.1111/bjd.15316
  • Zhou, Y., Wang, P., Yan, B. X., Chen, X. Y., Landeck, L., Wang, Z. Y., Li, X. X., Zhang, J., Zheng, M., & Man, X. Y. (2020). Quantitative proteomic profile of psoriatic epidermis identifies OAS2 as a novel biomarker for disease activity. Frontiers in Immunology, 11, 1432. https://doi.org/10.3389/fimmu.2020.01432

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.