49
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biochemical and biophysical characterization of biosynthetic arginine decarboxylase from Thermus thermophilus

, , , , &
Received 16 Jun 2023, Accepted 29 Jan 2024, Published online: 12 Feb 2024

References

  • Alam, M., Srivastava, A., Dutta, A., & Sau, A. K. (2018). Biochemical and biophysical studies of Helicobacter pylori arginine decarboxylase, an enzyme important for acid adaptation in host. IUBMB Life, 70(7), 658–669. https://doi.org/10.1002/iub.1754
  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Arora, N. K., Agnihotri, S., & Mishra, J. (2022). Extremozymes and Their Industrial Applications. Elsevier Science & Technology. https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=7018202
  • Bae, D. ‑H., Lane, D. J. R., Jansson, P. J., & Des Richardson, R. (2018). The old and new biochemistry of polyamines. Biochimica et Biophysica Acta. General Subjects, 1862(9), 2053–2068. https://doi.org/10.1016/j.bbagen.2018.06.004
  • Blethen, S. L., Boeker, E. A., & Snell, E. E. (1968). Argenine decarboxylase from Escherichia coli. I. Purification and specificity for substrates and coenzyme. Journal of Biological Chemistry, 243(8), 1671–1677. https://doi.org/10.1016/S0021-9258(18)93498-8
  • Boroujeni, M. B., Dastjerdeh, M. S., Shokrgozar, M., Rahimi, H., & Omidinia, E. (2021). Computational driven molecular dynamics simulation of keratinocyte growth factor behavior at different pH conditions. Informatics in Medicine Unlocked, 23, 100514. https://doi.org/10.1016/j.imu.2021.100514
  • Cava, F., Hidalgo, A., & Berenguer, J. (2009). Thermus thermophilus as biological model. Extremophiles: Life under Extreme Conditions, 13(2), 213–231. https://doi.org/10.1007/s00792-009-0226-6
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). Verify3d: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404. https://doi.org/10.1016/s0076-6879(97)77022-8
  • Friedrich, A., Hartsch, T., & Averhoff, B. (2001). Natural transformation in mesophilic and thermophilic bacteria: Identification and characterization of novel, closely related competence genes in Acinetobacter sp. Strain BD413 and Thermus thermophilus HB27. Applied and Environmental Microbiology, 67(7), 3140–3148. https://doi.org/10.1128/AEM.67.7.3140-3148.2001
  • Forouhar, F., Lew, S., Seetharaman, J., Xiao, R., Acton, T. B., Montelione, G. T., & Tong, L. (2010). Structures of bacterial biosynthetic arginine decarboxylases. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications, 66(Pt 12), 1562–1566. https://doi.org/10.1107/S1744309110040649
  • Gevrekci, A. Ö. (2017). The roles of polyamines in microorganisms. World Journal of Microbiology and Biotechnology, 33(11), 204. https://doi.org/10.1007/s11274-017-2370-y
  • Henne, A., Brüggemann, H., Raasch, C., Wiezer, A., Hartsch, T. [., Liesegang, H., Johann, A., Lienard, T., Gohl, O., Martinez-Arias, R., Jacobi, C., Starkuviene, V., Schlenczeck, S., Dencker, S., Huber, R., Klenk, H. ‑P., Kramer, W., Merkl, R., Gottschalk, G., & Fritz, H. ‑J. (2004). The genome sequence of the extreme thermophile Thermus thermophilus. Nature Biotechnology, 22(5), 547–553. https://doi.org/10.1038/nbt956
  • Hofer, S. J., Simon, A. K., Bergmann, M., Eisenberg, T., Kroemer, G., & Madeo, F. (2022). Mechanisms of spermidine-induced autophagy and geroprotection. Nature Aging, 2(12), 1112–1129. https://doi.org/10.1038/s43587-022-00322-9
  • Hollingsworth, S. A., & Dror, R. O. (2018). Molecular Dynamics Simulation for All. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
  • Hori, H. (2019). Regulatory Factors for tRNA Modifications in Extreme- Thermophilic Bacterium Thermus thermophilus. Frontiers in Genetics, 10, 204. https://doi.org/10.3389/fgene.2019.00204
  • Joyner, J. C., Keuper, K. D., & Cowan, J. A. (2013). Analysis of RNA cleavage by MALDI-TOF mass spectrometry. Nucleic Acids Research, 41(1), e2–e2. https://doi.org/10.1093/nar/gks811
  • K, D., Kuramitsu, S., Yokoyama, S., Thirumananseri, K., & Ponnuraj, K. (2023). Crystal structure analysis and molecular dynamics simulations of arginase from Thermus thermophilus. Journal of Biomolecular Structure & Dynamics, 41(14), 6811–6821. https://doi.org/10.1080/07391102.2022.2112615
  • Kawata, M., & Nagashima, U. (2001). Particle mesh Ewald method for three-dimensional systems with two-dimensional periodicity. Chemical Physics Letters, 340(1-2), 165–172. https://doi.org/10.1016/S0009-2614(01)00393-1
  • Kobayashi, T., Sakamoto, A., Kashiwagi, K., Igarashi, K., Moriya, T., Oshima, T. [., & Terui, Y. (2022). Alkaline Stress Causes Changes in Polyamine Biosynthesis in Thermus thermophilus. International Journal of Molecular Sciences, 23(21), 13523. https://doi.org/10.3390/ijms232113523
  • Li, J., Abel, R., Zhu, K., Cao, Y., Zhao, S., & Friesner, R. A. (2011). The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins, 79(10), 2794–2812. https://doi.org/10.1002/prot.23106
  • Lovell, S. C., Davis, I. W., Arendall, W. B., Bakker, P. I. W. D., Word, J. M., Prisant, M. G., Richardson, J. S., & Richardson, D. C. (2003). Structure validation by Calpha geometry: Phi,psi and Cbeta deviation. Proteins, 50(3), 437–450. https://doi.org/10.1002/prot.10286
  • Morris, D. R., & Pardee, A. B. (1965). A biosynthetic ornithine decarboxylase in Escherichia, coli. Biochemical and Biophysical Research Communications, 20(6), 697–702. https://doi.org/10.1016/0006-291x(65)90072-0
  • Murray, K. K., Seneviratne, C. A., & Ghorai, S. (2016). High resolution laser mass spectrometry bioimaging. Methods (San Diego, Calif.), 104, 118–126. https://doi.org/10.1016/j.ymeth.2016.03.002
  • Narayan, A., & Naganathan, A. N. (2018). Switching Protein Conformational Substates by Protonation and Mutation. The Journal of Physical Chemistry. B, 122(49), 11039–11047. https://doi.org/10.1021/acs.jpcb.8b05108
  • Ohtani, N., Tomita, M., & Itaya, M. (2010). An extreme thermophile, Thermus thermophilus, is a polyploid bacterium. Journal of Bacteriology, 192(20), 5499–5505. https://doi.org/10.1128/JB.00662-10
  • Oshima, T. (2007). Unique polyamines produced by an extreme thermophile, Thermus thermophilus. Amino Acids, 33(2), 367–372. https://doi.org/10.1007/s00726-007-0526-z
  • Oshima, T. (2010). Enigmas of biosyntheses of unusual polyamines in an extreme thermophile, Thermus thermophilus. Plant Physiology and Biochemistry: PPB, 48(7), 521–526. https://doi.org/10.1016/j.plaphy.2010.03.011
  • Prasher, P., Sharma, M., Singh, S. K., Gulati, M., Chellappan, D. K., Rajput, R., Gupta, G., Ydyrys, A., Kulbayeva, M., Abdull Razis, A. F., Modu, B., Sharifi-Rad, J., & Dua, K. (2023). Spermidine as a promising anticancer agent: Recent advances and newer insights on its molecular mechanisms. Frontiers in Chemistry, 11, 1164477. https://doi.org/10.3389/fchem.2023.1164477
  • Shukla, R., & Tripathi, T. (2020). Molecular dynamics simulation of protein and protein–ligand complexes. Computer-Aided Drug Design, 133–161.
  • Sievers, F., & Higgins, D. G. (2018). Clustal Omega for making accurate alignments of many protein sequences. Protein Science: A Publication of the Protein Society, XIII(1), 135–145. https://doi.org/10.1002/pro.3290
  • Sun, A., Song, W., Qiao, W., Chen, X., Liu, J., Luo, Q., & Liu, L. (2017). Efficient agmatine production using an arginine decarboxylase with substrate‐specific activity. Journal of Chemical Technology & Biotechnology, 92(9), 2383–2391. https://doi.org/10.1002/jctb.5245
  • Tabor, C. W., & Tabor, H. (1984). Polyamines. Annual Review of Biochemistry, 53(1), 749–790. https://doi.org/10.1146/annurev.bi.53.070184.003533
  • Tabor, C. W., & Tabor, H. (1985). Polyamines in microorganisms. Microbiological Reviews, 49(1), 81–99. https://doi.org/10.1128/mr.49.1.81-99.1985
  • Takahashi, T., & Kakehi, J. I. (2010). Polyamines: Ubiquitous polycations with unique roles in growth and stress responses. Annals of Botany, 105(1), 1–6. https://doi.org/10.1093/aob/mcp259
  • Tamakoshi, M., & Oshima, T. (2011). Genetics of Thermophiles. In K. Horikoshi (Ed.), Extremophiles Handbook. (pp. 547–566). Springer Japan. https://doi.org/10.1007/978-4-431-53898-1_25
  • Teh, B. S., Abdul Rahman, A. Y., Saito, J. A., Hou, S., & Alam, M. (2012). Complete genome sequence of the thermophilic bacterium Thermus sp. Strain CCB_US3_UF1. Journal of Bacteriology, 194(5), 1240–1240. https://doi.org/10.1128/JB.06589-11
  • Terui, Y., Ohnuma, M., Hiraga, K., Kawashima, E., & Oshima, T. (2005). Stabilization of nucleic acids by unusual polyamines produced by an extreme thermophile, Thermus thermophilus. The Biochemical Journal, 388(Pt 2), 427–433. https://doi.org/10.1042/BJ20041778
  • Thiede, B., Höhenwarter, W., Krah, A., Mattow, J., Schmid, M., Schmidt, F., & Jungblut, P. R. (2005). Peptide mass fingerprinting. Methods (San Diego, Calif.), 35(3), 237–247. https://doi.org/10.1016/j.ymeth.2004.08.015
  • UniProt Consortium (2007). The Universal Protein Resource (UniProt). Nucleic Acids Research, 35(Database issue), D193–7. https://doi.org/10.1093/nar/gkl929
  • Uzawa, T., Hamasaki, N., & Oshima, T. (1993). Effects of novel polyamines on cell-free polypeptide synthesis catalyzed by Thermus thermophilus HB8 extract. Journal of Biochemistry, 114(4), 478–486. https://doi.org/10.1093/oxfordjournals.jbchem.a124203.]
  • Webb, B., & Sali, A. (2016). Comparative Protein Structure Modeling Using MODELLER. Current Protocols in Bioinformatics, 54(1), 5.6.1–5.6.37. https://doi.org/10.1002/cpbi.3
  • Wiederstein, M., & Sippl, M. J. (2007). Prosa-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue)issue, W407–10. https://doi.org/10.1093/nar/gkm290
  • Wu, H. Y., Chen, S. F., Hsieh, J. Y., Chou, F., Wang, Y. H., Lin, W. T., Lee, P. Y., Yu, Y. J., Lin, L. Y., Lin, T. S., Lin, C. L., Liu, G. Y., Tzeng, S. R., Hung, H. C., & Chan, N. L. (2015). Structural basis of antizyme-mediated regulation of polyamine homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 112(36), 11229–11234. https://doi.org/10.1073/pnas.1508187112

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.