69
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The effect of phosphorylation on the conformational dynamics and allostery of the association of death-associated protein kinase with calmodulin

, , , , , , & show all
Received 15 Nov 2023, Accepted 05 Feb 2024, Published online: 08 Mar 2024

References

  • Attwood, M. M., Fabbro, D., Sokolov, A. V., Knapp, S., & Schiöth, H. B. (2021). Trends in kinase drug discovery: Targets, indications and inhibitor design. Nature Reviews. Drug Discovery, 20(11), 839–861. https://doi.org/10.1038/s41573-021-00252-y
  • Bialik, S., & Kimchi, A. (2006). The death-associated protein kinases: Structure, function, and beyond. Annual Review of Biochemistry, 75(1), 189–210. https://doi.org/10.1146/annurev.biochem.75.103004.142615
  • Bonne Køhler, J., Jers, C., Senissar, M., Shi, L., Derouiche, A., & Mijakovic, I. (2020). Importance of protein Ser/Thr/Tyr phosphorylation for bacterial pathogenesis. FEBS Letters, 594(15), 2339–2369. https://doi.org/10.1002/1873-3468.13797
  • Cao, S., Jiang, X., Tan, C., Fu, M., Xiong, W., Ji, D., & Lv, J. (2021). How does nintedanib overcome cancer drug-resistant mutation of RET protein-tyrosine kinase: Insights from molecular dynamics simulations. Journal of Molecular Modeling, 27(11), 337. https://doi.org/10.1007/s00894-021-04964-1
  • Chao, L. H., Stratton, M. M., Lee, I.-H., Rosenberg, O. S., Levitz, J., Mandell, D. J., Kortemme, T., Groves, J. T., Schulman, H., & Kuriyan, J. (2011). A mechanism for tunable autoinhibition in the structure of a human Ca 2+/calmodulin-dependent kinase II holoenzyme. Cell, 146(5), 732–745. https://doi.org/10.1016/j.cell.2011.07.038
  • Chen, J., Liu, X., Zhang, S., Chen, J., Sun, H., Zhang, L., & Zhang, Q. (2020). Molecular mechanism with regard to the binding selectivity of inhibitors toward FABP5 and FABP7 explored by multiple short molecular dynamics simulations and free energy analyses. Physical Chemistry Chemical Physics: PCCP, 22(4), 2262–2275. https://doi.org/10.1039/c9cp05704h
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N.long(N)method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • de Diego, I., Kuper, J., Bakalova, N., Kursula, P., & Wilmanns, M. (2010). Molecular basis of the death-associated protein kinase-calcium/calmodulin regulator complex. Science Signaling, 3(106), ra6. https://doi.org/10.1126/scisignal.2000552
  • Dutta, S., Ghosh, M., & Chakrabarti, J. (2017). Spatio-temporal coordination among functional residues in protein. Scientific Reports, 7(1), 40439. https://doi.org/10.1038/srep40439
  • Farag, A. K., & Roh, E. J. (2019). Death-associated protein kinase (DAPK) family modulators: Current and future therapeutic outcomes. Medicinal Research Reviews, 39(1), 349–385. https://doi.org/10.1002/med.21518
  • Hupp, T. R. (2010). Death-associated protein kinase (DAPK) and signal transduction. The FEBS Journal, 277(1), 47–47. https://doi.org/10.1111/j.1742-4658.2009.07410.x
  • Isakov, N. (2018). Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression. Seminars in Cancer Biology, 48, 36–52. https://doi.org/10.1016/j.semcancer.2017.04.012
  • Jeffrey, P. D., Russo, A. A., Polyak, K., Gibbs, E., Hurwitz, J., Massagué, J., & Pavletich, N. P. (1995). Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature, 376(6538), 313–320. https://doi.org/10.1038/376313a0
  • Jin, Y., Blue, E. K., & Gallagher, P. J. (2006). Control of death-associated protein kinase (DAPK) activity by phosphorylation and proteasomal degradation. The Journal of Biological Chemistry, 281(51), 39033–39040. https://doi.org/10.1074/jbc.M605097200
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Li, M., Wang, Y., Fan, J., Zhuang, H., Liu, Y., Ji, D., & Lu, S. (2022). Mechanistic insights into the long-range allosteric regulation of KRAS via neurofibromatosis type 1 (NF1) Scaffold upon SPRED1 loading. Journal of Molecular Biology, 434(17), 167730. https://doi.org/10.1016/j.jmb.2022.167730
  • Li, X., Li, B., Li, J., Yang, M., Bai, Y., Chen, K., Chen, Z., & Mao, N. (2022). Mechanistic insights into the role of calcium in the allosteric regulation of the calmodulin-regulated death-associated protein kinase. Frontiers in Molecular Biosciences, 9, 1104942. https://doi.org/10.3389/fmolb.2022.1104942
  • Li, X., Wang, C., Peng, T., Chai, Z., Ni, D., Liu, Y., Zhang, J., Chen, T., & Lu, S. (2021). Atomic-scale insights into allosteric inhibition and evolutional rescue mechanism of Streptococcus thermophilus Cas9 by the anti-CRISPR protein AcrIIA6. Computational and Structural Biotechnology Journal, 19, 6108–6124. https://doi.org/10.1016/j.csbj.2021.11.010
  • Lu, S., Chen, Y., Wei, J., Zhao, M., Ni, D., He, X., & Zhang, J. (2021). Mechanism of allosteric activation of SIRT6 revealed by the action of rationally designed activators. Acta Pharmaceutica Sinica. B, 11(5), 1355–1361. https://doi.org/10.1016/j.apsb.2020.09.010
  • Lu, S., He, X., Yang, Z., Chai, Z., Zhou, S., Wang, J., Rehman, A. U., Ni, D., Pu, J., Sun, J., & Zhang, J. (2021). Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nature Communications, 12(1), 4721. https://doi.org/10.1038/s41467-021-25020-9
  • Lu, S., Ni, D., Wang, C., He, X., Lin, H., Wang, Z., & Zhang, J. (2019). Deactivation pathway of Ras GTPase underlies conformational substates as targets for drug design. ACS Catalysis, 9(8), 7188–7196. https://doi.org/10.1021/acscatal.9b02556
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Ni, D., Wei, J., He, X., Rehman, A. U., Li, X., Qiu, Y., Pu, J., Lu, S., & Zhang, J. (2021). Discovery of cryptic allosteric sites using reversed allosteric communication by a combined computational and experimental strategy. Chemical Science, 12(1), 464–476. https://doi.org/10.1039/D0SC05131D
  • Nussinov, R., Zhang, M., Maloney, R., Tsai, C. J., Yavuz, B. R., Tuncbag, N., & Jang, H. (2022). Mechanism of activation and the rewired network: New drug design concepts. Medicinal Research Reviews, 42(2), 770–799. https://doi.org/10.1002/med.21863
  • Pearce, L. R., Komander, D., & Alessi, D. R. (2010). The nuts and bolts of AGC protein kinases. Nature Reviews. Molecular Cell Biology, 11(1), 9–22. https://doi.org/10.1038/nrm2822
  • Qiu, Y., Wang, Y., Chai, Z., Ni, D., Li, X., Pu, J., Chen, J., Zhang, J., Lu, S., Lv, C., & Ji, M. (2021). Targeting RAS phosphorylation in cancer therapy: Mechanisms and modulators. Acta Pharmaceutica Sinica. B, 11(11), 3433–3446. https://doi.org/10.1016/j.apsb.2021.02.014
  • Qiu, Y., Yin, X., Li, X., Wang, Y., Fu, Q., Huang, R., & Lu, S. (2021). Untangling dual-targeting therapeutic mechanism of epidermal growth factor receptor (EGFR) based on reversed allosteric communication. Pharmaceutics, 13(5), 747. https://doi.org/10.3390/pharmaceutics13050747
  • Ren, L., Shen, D., Liu, C., & Ding, Y. (2021). Protein tyrosine and serine/threonine phosphorylation in oral bacterial dysbiosis and bacteria-host interaction. Frontiers in Cellular and Infection Microbiology, 11, 814659. https://doi.org/10.3389/fcimb.2021.814659
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Saha, A., Arantes, P. R., Hsu, R. V., Narkhede, Y. B., Jinek, M., & Palermo, G. (2020). Molecular dynamics reveals a DNA-induced dynamic switch triggering activation of CRISPR-Cas12a. Journal of Chemical Information and Modeling, 60(12), 6427–6437. https://doi.org/10.1021/acs.jcim.0c00929
  • Salomon-Ferrer, R., Case, D. A., & Walker, R. C. (2013). An overview of the Amber biomolecular simulation package. WIREs Computational Molecular Science, 3(2), 198–210. https://doi.org/10.1002/wcms.1121
  • Shohat, G., Spivak-Kroizman, T., Cohen, O., Bialik, S., Shani, G., Berrisi, H., Eisenstein, M., & Kimchi, A. (2001). The pro-apoptotic function of death-associated protein kinase is controlled by a unique inhibitory autophosphorylation-based mechanism. The Journal of Biological Chemistry, 276(50), 47460–47467. https://doi.org/10.1074/jbc.M105133200
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. review-article. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wang, Y., Li, M., Liang, W., Shi, X., Fan, J., Kong, R., Liu, Y., Zhang, J., Chen, T., & Lu, S. (2022). Delineating the activation mechanism and conformational landscape of a class B G protein-coupled receptor glucagon receptor. Computational and Structural Biotechnology Journal, 20, 628–639. https://doi.org/10.1016/j.csbj.2022.01.015
  • Webb, B., & Sali, A. (2014). Protein structure modeling with MODELLER. Methods in Molecular Biology (Clifton, N.J.), 1137, 1–15. https://doi.org/10.1007/978-1-4939-0366-5_1
  • Xie, T., Yu, J., Fu, W., Wang, Z., Xu, L., Chang, S., Wang, E., Zhu, F., Zeng, S., Kang, Y., & Hou, T. (2019). Insight into the selective binding mechanism of DNMT1 and DNMT3A inhibitors: A molecular simulation study. Physical Chemistry Chemical Physics: PCCP, 21(24), 12931–12947. https://doi.org/10.1039/C9CP02024A
  • Zhu, Y.-P., Gao, X.-Y., Xu, G.-H., Qin, Z.-F., Ju, H.-X., Li, D.-C., & Ma, D.-N. (2022). Computational dissection of the role of Trp305 in the regulation of the death-associated protein kinase–calmodulin interaction. Biomolecules, 12(10), 1395. https://doi.org/10.3390/biom12101395

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.