131
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Network pharmacology integrated molecular docking of fucoidan against oral cancer and in vitro evaluation- A study using GEO datasets

, &
Received 24 Aug 2023, Accepted 02 Feb 2024, Published online: 22 Feb 2024

References

  • Ahmed, S. R., Al-Sanea, M. M., Mostafa, E. M., Qasim, S., Abelyan, N., & Mokhtar, F. A. (2022). A network pharmacology analysis of cytotoxic triterpenes isolated from Euphorbia abyssinica latex supported by drug-likeness and ADMET studies. ACS Omega, 7(21), 17713–17722. https://doi.org/10.1021/acsomega.2c00750
  • Ain-Ali, Q., Mushtaq, N., Amir, R., Gul, A., Tahir, M., & Munir, F. (2021). Genome-wide promoter analysis, homology modeling and protein interaction network of Dehydration Responsive Element Binding (DREB) gene family in Solanum tuberosum. PloS One, 16(12), e0261215. https://doi.org/10.1371/journal.pone.0261215
  • Alwarsamy, M., Gooneratne, R., & Ravichandran, R. (2016). Effect of fucoidan from Turbinaria conoides on human lung adenocarcinoma epithelial (A549) cells. Carbohydrate Polymers, 152, 207–213. https://doi.org/10.1016/j.carbpol.2016.06.112
  • Ambatipudi, S., Gerstung, M., Pandey, M., Samant, T., Patil, A., Kane, S., Desai, R. S., Schäffer, A. A., Beerenwinkel, N., & Mahimkar, M. B. (2012). Genome-wide expression and copy number analysis identifies driver genes in gingivobuccal cancers. Genes, Chromosomes & Cancer, 51(2), 161–173. https://doi.org/10.1002/gcc.20940
  • Atashrazm, F., Lowenthal, R. M., Woods, G. M., Holloway, A. F., & Dickinson, J. L. (2015). Fucoidan and cancer: A multifunctional molecule with anti-tumor potential. Marine Drugs, 13(4), 2327–2346. https://doi.org/10.3390/md13042327
  • Atyeo, N., Rodriguez, M. D., Papp, B., & Toth, Z. (2021). Clinical manifestations and epigenetic regulation of oral herpesvirus infections. Viruses, 13(4), 681. https://doi.org/10.3390/v13040681
  • Babiuch, K., Kuśnierz-Cabala, B., Kęsek, B., Okoń, K., Darczuk, D., & Chomyszyn-Gajewska, M. (2020). Evaluation of proinflammatory, NF-kappaB dependent cytokines: IL-1α, IL-6, IL-8, and TNF-α in tissue specimens and saliva of patients with oral squamous cell carcinoma and oral potentially malignant disorders. Journal of Clinical Medicine, 9(3), 867. https://doi.org/10.3390/jcm9030867
  • Bai, X., Zhang, E., Hu, B., Liang, H., Song, S., & Ji, A. (2020). Study on absorption mechanism and tissue distribution of fucoidan. Molecules (Basel, Switzerland), 25(5), 1087. https://doi.org/10.3390/molecules25051087
  • Bhandare, R. R., Sigalapalli, D. K., Shaik, A. B., Canney, D. J., & Blass, B. E. (2022). Selectivity profile comparison for certain γ-butyrolactone and oxazolidinone-based ligands on a sigma 2 receptor over sigma 1: A molecular docking approach. RSC Advances, 12(31), 20096–20109. https://doi.org/10.1039/D2RA03497B
  • Bhardwaj, V. K., Singh, R., Sharma, J., Rajendran, V., Purohit, R., & Kumar, S. (2020). Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure & Dynamics, 39(10), 3449–3458. https://doi.org/10.1080/07391102.2020.1766572
  • Borse, V., Konwar, A. N., & Buragohain, P. (2020). Oral cancer diagnosis and perspectives in India. Sensors International, 1, 100046. https://doi.org/10.1016/j.sintl.2020.100046
  • Chantree, P., Surarak, T., Sangpairoj, K., Aguilar, P., & Hitakomate, E. (2020). Antitumor effects of fucoidan via apoptotic and autophagic induction on HSC-3 oral squamous cellcarcinoma. Asian Pacific Journal of Cancer Prevention, 21(8), 2469–2477. https://doi.org/10.31557/APJCP.2020.21.8.2469
  • Chen, J., Wang, J., Lai, F., Wang, W., Pang, L., & Zhu, W. (2018). Dynamics revelation of conformational changes and binding modes of heat shock protein 90 induced by inhibitor associations. RSC Advances, 8(45), 25456–25467. https://doi.org/10.1039/C8RA05042B
  • Chen, J. Y.-F., Hung, C.-C., Huang, K.-L., Chen, Y.-T., Liu, S.-Y., Chiang, W.-F., Chen, H.-R., Yen, C.-Y., Wu, Y.-J., Ko, J.-Y., & Jou, Y.-S. (2008). Src family kinases mediate betel quid-induced oral cancer cell motility and could be a biomarker for early invasion in oral squamous cell carcinoma. Neoplasia (New York, N.Y.), 10(12), 1393–1401. https://doi.org/10.1593/neo.08854
  • Chin, C.-H., Chen, S.-H., Wu, H.-H., Ho, C.-W., Ko, M.-T., & Lin, C.-Y. (2014). cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 8(Suppl. 4), S11. https://doi.org/10.1186/1752-0509-8-S4-S11
  • Cunha, L., & Grenha, A. (2016). Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Marine Drugs, 14(3), 42. https://doi.org/10.3390/md14030042
  • Das, T., Andrieux, G., Ahmed, M., & Chakraborty, S. (2020). Integration of online omics-data resources for cancer research. Frontiers in Genetics, 11, 578345. https://doi.org/10.3389/fgene.2020.578345
  • Fan, G., Tu, Y., Wu, N., & Xiao, H. (2020). The expression profiles and prognostic values of HSPs family members in head and neck cancer. Cancer Cell International, 20(1), 220. https://doi.org/10.1186/s12935-020-01296-7
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Ganapathy, S., Asmy, S., Natarajan, J., Selvaraj, U., & Thirugnanasambandan, S. (2020). Invitro and insilico analysis of the marine seaweed-derived compound fucoidan against EMT markers. International Journal of Scientific & Technology Research, 9(4), 1–4.
  • Gangadharappa, B. S., Sharath, R., Revanasiddappa, P. D., Chandramohan, V., Balasubramaniam, M., & Vardhineni, T. P. (2020). Structural insights of metallo-beta-lactamase revealed an effective way of inhibition of enzyme by natural inhibitors. Journal of Biomolecular Structure & Dynamics, 38(13), 3757–3771. https://doi.org/10.1080/07391102.2019.1667265
  • Hassanpour, S. H., & Dehghani, M. (2017). Review of cancer from perspective of molecular. Journal of Cancer Research and Practice, 4(4), 127–129. https://doi.org/10.1016/j.jcrpr.2017.07.001
  • He, S., Zhang, W., Li, X., Wang, J., Chen, X., Chen, Y., & Lai, R. (2021). Oral squamous cell carcinoma (OSCC)-derived exosomal MiR-221 targets and regulates phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) to promote human umbilical vein endothelial cells migration and tube formation. Bioengineered, 12(1), 2164–2174. https://doi.org/10.1080/21655979.2021.1932222
  • Hopkins, A. L. (2008). Network pharmacology: The next paradigm in drug discovery. Nature Chemical Biology, 4(11), 682–690. https://doi.org/10.1038/nchembio.118
  • Hsu, H. Y., Chiu, S. L., Wen, M. H., Chen, K. Y., & Hua, K. F. (2001). Ligands of macrophage scavenger receptor induce cytokine expression via differential modulation of protein kinase signaling pathways. The Journal of Biological Chemistry, 276(31), 28719–28730. https://doi.org/10.1074/jbc.M011117200
  • Iannuccelli, M., Micarelli, E., Surdo, P. L., Palma, A., Perfetto, L., Rozzo, I., Castagnoli, L., Licata, L., & Cesareni, G. (2020). CancerGeneNet: Linking driver genes to cancer hallmarks. Nucleic Acids Research, 48(D1), D416–D421. https://doi.org/10.1093/nar/gkz871
  • Irby, R. B., & Yeatman, T. J. (2000). Role of Src expression and activation in human cancer. Oncogene, 19(49), 5636–5642. https://doi.org/10.1038/sj.onc.1203912
  • Jacobsen, K., Bertran-Alamillo, J., Molina, M. A., Teixidó, C., Karachaliou, N., Pedersen, M. H., Castellví, J., Garzón, M., Codony-Servat, C., Codony-Servat, J., Giménez-Capitán, A., Drozdowskyj, A., Viteri, S., Larsen, M. R., Lassen, U., Felip, E., Bivona, T. G., Ditzel, H. J., & Rosell, R. (2017). Convergent Akt activation drives acquired EGFR inhibitor resistance in lung cancer. Nature Communications, 8(1), 410. https://doi.org/10.1038/s41467-017-00450-6
  • Jin, J.-O., Chauhan, P. S., Arukha, A. P., Chavda, V., Dubey, A., & Yadav, D. (2021). The therapeutic potential of the anticancer activity of fucoidan: Current advances and hurdles. Marine Drugs, 19(5), 265. https://doi.org/10.3390/md19050265
  • Johnson, N. W., Warnakulasuriya, S., Gupta, P. C., Dimba, E., Chindia, M., Otoh, E. C., Sankaranarayanan, R., Califano, J., & Kowalski, L. (2011). Global oral health inequalities in incidence and outcomes for oral cancer: Causes and solutions. Advances in Dental Research, 23(2), 237–246. https://doi.org/10.1177/0022034511402082
  • Kakarala, K. K., & Jamil, K. (2022). Identification of novel allosteric binding sites and multi-targeted allosteric inhibitors of receptor and non-receptor tyrosine kinases using a computational approach. Journal of Biomolecular Structure & Dynamics, 40(15), 6889–6909. https://doi.org/10.1080/07391102.2021.1891140
  • Kase, Y., Uzawa, K., Wagai, S., Yoshimura, S., Yamamoto, J. I., Toeda, Y., Okubo, M., Eizuka, K., Ando, T., Nobuchi, T., Kawasaki, K., Saito, T., Iyoda, M., Nakashima, D., Kasamatsu, A., & Tanzawa, H. (2021). Engineered exosomes delivering specific tumor-suppressive RNAi attenuate oral cancer progression. Scientific Reports, 11(1), 5897. https://doi.org/10.1038/s41598-021-85242-1
  • Kazybay, B., Sun, Q., Dukenbayev, K., Nurkesh, A. A., Xu, N., Kutzhanova, A., Razbekova, M., Kabylda, A., Yang, Q., Wang, Q., Ma, C., & Xie, Y. (2022). Network pharmacology with experimental investigation of the mechanisms of rhizoma polygonati against prostate cancer with additional herbzymatic activity. ACS Omega, 7(17), 14465–14477. https://doi.org/10.1021/acsomega.1c03018
  • Ketabat, F., Pundir, M., Mohabatpour, F., Lobanova, L., Koutsopoulos, S., Hadjiiski, L., Chen, X., Papagerakis, P., & Papagerakis, S. (2019). Controlled drug delivery systems for oral cancer treatment-current status and future perspectives. Pharmaceutics, 11(7), 302. https://doi.org/10.3390/pharmaceutics11070302
  • Kumar, V., Kumar, A., Kumar, M., Lone, M. R., Mishra, D., & Chauhan, S. S. (2022). NFκB (RelA) mediates transactivation of hnRNPD in oral cancer cells. Scientific Reports, 12(1), 5944. https://doi.org/10.1038/s41598-022-09963-7
  • Kumari, R., Kumar, R., & Lynn, A, Open Source Drug Discovery Consortium. (2014). g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lakshmana Senthil, S., Raghu, C., Arjun, H. A., & Anantharaman, P. (2019). In vitro and in silico inhibition properties of fucoidan against α-amylase and α-D-glucosidase with relevance to type 2 diabetes mellitus. Carbohydrate Polymers, 209, 350–355. https://doi.org/10.1016/j.carbpol.2019.01.039
  • Lánczky, A., & Győrffy, B. (2021). Web-based survival analysis tool tailored for medical research (KMplot): Development and Implementation. Journal of Medical Internet Research, 23(7), e27633. https://doi.org/10.2196/27633
  • Lee, N. Y., Ermakova, S. P., Zvyagintseva, T. N., Kang, K. W., Dong, Z., & Choi, H. S. (2008). Inhibitory effects of fucoidan on activation of epidermal growth factor receptor and cell transformation in JB6 Cl41 cells. Food and Chemical Toxicology, 46(5), 1793–1800. https://doi.org/10.1016/j.fct.2008.01.025
  • Legeay, M., Doncheva, N. T., Morris, J. H., & Jensen, L. J. (2020). Visualize omics data on networks with Omics Visualizer, a Cytoscape app. F1000Research, 9, 157. https://doi.org/10.12688/f1000research.22280.2
  • Li, B., Lu, F., Wei, X., & Zhao, R. (2008). Fucoidan: Structure and Bioactivity. Molecules (Basel, Switzerland), 13(8), 1671–1695. https://doi.org/10.3390/molecules13081671
  • Li, X., Lin, B., Lin, Z., Ma, Y., Wang, Q., Zheng, Y., Cui, L., Luo, H., & Luo, L. (2021). Exploration in the mechanism of fucosterol for the treatment of non-small cell lung cancer based on network pharmacology and molecular docking. Scientific Reports, 11(1), 4901. https://doi.org/10.1038/s41598-021-84380-w
  • Lin, Y., Qi, X., Liu, H., Xue, K., Xu, S., & Tian, Z. (2020). The anti-cancer effects of fucoidan: A review of both in vivo and in vitro investigations. Cancer Cell International, 20(1), 154. https://doi.org/10.1186/s12935-020-01233-8
  • Lingamgunta, L. K., Aloor, B. P., Dasari, S., Ramakrishnan, R., Botlagunta, M., Madikonda, A. K., Gopal, S., & Sade, A. (2023). Identification of prognostic hub genes and therapeutic targets for selenium deficiency in chicks model through transcriptome profiling. Scientific Reports, 13(1), 8695. https://doi.org/10.1038/s41598-023-34955-6
  • Liu, X., Ouyang, S., Yu, B., Liu, Y., Huang, K., Gong, J., Zheng, S., Li, Z., Li, H., & Jiang, H. (2010). PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Research, 38(Web Server issue), W609–14. https://doi.org/10.1093/nar/gkq300
  • Lokhande, K. B., Ghosh, P., Nagar, S., & Venkateswara Swamy, K. (2022). Novel B, C-ring truncated deguelin derivatives reveals as potential inhibitors of cyclin D1 and cyclin E using molecular docking and molecular dynamic simulation. Molecular Diversity, 26(4), 2295–2309. https://doi.org/10.1007/s11030-021-10334-z
  • Mohamed, N., Litlekalsøy, J., Ahmed, I. A., Martinsen, E. M. H., Furriol, J., Javier-Lopez, R., Elsheikh, M., Gaafar, N. M., Morgado, L., Mundra, S., Johannessen, A. C., Osman, T. A.-H., Nginamau, E. S., Suleiman, A., & Costea, D. E. (2021). Analysis of salivary mycobiome in a cohort of oral squamous cell carcinoma patients from Sudan identifies higher salivary carriage of Malassezia as an independent and favorable predictor of overall survival. Frontiers in Cellular and Infection Microbiology, 11, 673465. https://doi.org/10.3389/fcimb.2021.673465
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
  • Mourad, A. A. E., Farouk, N. A., El-Sayed, E.-S H., & Mahdy, A. R. E. (2021). EGFR/VEGFR-2 dual inhibitor and apoptotic inducer: Design, synthesis, anticancer activity and docking study of new 2-thioxoimidazolidin-4one derivatives. Life Sciences, 277, 119531. https://doi.org/10.1016/j.lfs.2021.119531
  • Nagao, Y., Sata, M., Tanikawa, K., Itoh, K., & Kameyama, T. (1995). High prevalence of hepatitis C virus antibody and RNA in patients with oral cancer. Journal of Oral Pathology & Medicine, 24(8), 354–360. https://doi.org/10.1111/j.1600-0714.1995.tb01199.x
  • Nagy, Á., Munkácsy, G., & Győrffy, B. (2021). Pancancer survival analysis of cancer hallmark genes. Scientific Reports, 11(1), 6047. https://doi.org/10.1038/s41598-021-84787-5
  • Nakano, Y., Kobayashi, W., Sugai, S., Kimura, H., & Yagihashi, S. (1999). Expression of tumor necrosis factor-α and interleukin-6 in oral squamous cell carcinoma. Japanese Journal of Cancer Research: Gann, 90(8), 858–866. https://doi.org/10.1111/j.1349-7006.1999.tb00827.x
  • Nicora, G., Vitali, F., Dagliati, A., Geifman, N., & Bellazzi, R. (2020). Integrated multi-omics analyses in oncology: A review of machine learning methods and tools. Frontiers in Oncology, 10, 1030. https://doi.org/10.3389/fonc.2020.01030
  • Niu, M., Zhang, B., Li, L., Su, Z., Pu, W., Zhao, C., Wei, L., Lian, P., Lu, R., Wang, R., Wazir, J., Gao, Q., Song, S., & Wang, H. (2021). Targeting HSP90 inhibits proliferation and induces apoptosis through AKT1/ERK pathway in lung cancer. Frontiers in Pharmacology, 12, 724192. https://doi.org/10.3389/fphar.2021.724192
  • Omer, S. E., Ibrahim, T. M., Krar, O. A., Ali, A. M., Makki, A. A., Ibraheem, W., & Alzain, A. A. (2022). Drug repurposing for SARS-CoV-2 main protease: Molecular docking and molecular dynamics investigations. Biochemistry and Biophysics Reports, 29, 101225. https://doi.org/10.1016/j.bbrep.2022.101225
  • Oo, M. W., Kawai, H., Takabatake, K., Shan, Q., Eain, H. S., Sukegawa, S., Nakano, K., & Nagatsuka, H. (2022). Cancer-associated stromal cells promote the contribution of MMP2-positive bone marrow-derived cells to oral squamous cell carcinoma invasion. Cancers, 14(1). https://doi.org/10.3390/cancers14010137
  • Palanisamy, S., Vinosha, M., Marudhupandi, T., Rajasekar, P., & Prabhu, N. M. (2017). In vitro antioxidant and antibacterial activity of sulfated polysaccharides isolated from Spatoglossum asperum. Carbohydrate Polymers, 170, 296–304. https://doi.org/10.1016/j.carbpol.2017.04.085
  • Pan, T.-J., Li, L.-X., Zhang, J.-W., Yang, Z.-S., Shi, D.-M., Yang, Y.-K., & Wu, W.-Z. (2019). Antimetastatic effect of Fucoidan-Sargassum against liver cancer cell invadopodia formation via targeting integrin αVβ3 and mediating αVβ3/Src/E2F1 signaling. Journal of Cancer, 10(20), 4777–4792. https://doi.org/10.7150/jca.26740
  • Peng, C.-H., Liao, C.-T., Peng, S.-C., Chen, Y.-J., Cheng, A.-J., Juang, J.-L., Tsai, C.-Y., Chen, T.-C., Chuang, Y.-J., Tang, C.-Y., Hsieh, W.-P., & Yen, T.-C. (2011). A novel molecular signature identified by systems genetics approach predicts prognosis in oral squamous cell carcinoma. PloS One, 6(8), e23452. https://doi.org/10.1371/journal.pone.0023452
  • Ribeiro, F. A. P., Noguti, J., Oshima, C. T. F., & Ribeiro, D. A. (2014). Effective targeting of the epidermal growth factor receptor (EGFR) for treating oral cancer: A promising approach. Anticancer Research, 34(4), 1547–1552.
  • Sachit, H. G., Almahbobi, T. F., Ali, Z. M. M., Ali, S. H. M., & Mohammed Al-Alwany, S. H. (2019). A molecular implicatory propositioning roles for human cytomegalovirus and p16 gene expression in oral squamous cellular carcinogenesis. Journal of Pure and Applied Microbiology, 13(4), 2333–2342. https://doi.org/10.22207/JPAM.13.4.49
  • Salvo, E., Tu, N. H., Scheff, N. N., Dubeykovskaya, Z. A., Chavan, S. A., Aouizerat, B. E., & Ye, Y. (2021). TNFα promotes oral cancer growth, pain, and Schwann cell activation. Scientific Reports, 11(1), 1840. https://doi.org/10.1038/s41598-021-81500-4
  • Sharif Siam, M. K., Sarker, A., & Sayeem, M. M. S. (2021). In silico drug design and molecular docking studies targeting Akt1 (RAC-alpha serine/threonine-protein kinase) and Akt2 (RAC-beta serine/threonine-protein kinase) proteins and investigation of CYP (cytochrome P450) inhibitors against MAOB (monoamine oxida oxidase B) for OSCC (oral squamous cell carcinoma) treatment). Journal of Biomolecular Structure & Dynamics, 39(17), 6467–6479. https://doi.org/10.1080/07391102.2020.1802335
  • Sharma, B., Bhattacherjee, D., Zyryanov, G. V., & Purohit, R. (2022). An insight from computational approach to explore novel, high-affinity phosphodiesterase 10A inhibitors for neurological disorders. Journal of Biomolecular Structure & Dynamics, 41(19), 9424–9436. https://doi.org/10.1080/07391102.2022.2141895
  • Sharma, S., Satyanarayana, L., Asthana, S., Shivalingesh, K. K., Goutham, B. S., & Ramachandra, S. (2018). Oral cancer statistics in India on the basis of first report of 29 population-based cancer registries. Journal of Oral and Maxillofacial Pathology: JOMFP, 22(1), 18–26. https://doi.org/10.4103/jomfp.JOMFP_113_17
  • Shiau, J.-P., Chuang, Y.-T., Yang, K.-H., Chang, F.-R., Sheu, J.-H., Hou, M.-F., Jeng, J.-H., Tang, J.-Y., & Chang, H.-W. (2022). Brown algae-derived fucoidan exerts oxidative stress-dependent antiproliferation on oral cancer cells. Antioxidants (Basel, Switzerland), 11(5), 841. https://doi.org/10.3390/antiox11050841
  • Subash, A., Bylapudi, B., Thakur, S., & Rao, V. U. S. (2022). Oral cancer in India, a growing problem: Is limiting the exposure to avoidable risk factors the only way to reduce the disease burden? Oral Oncology, 125, 105677. https://doi.org/10.1016/j.oraloncology.2021.105677
  • Suman, S., Das, T. P., Sirimulla, S., Alatassi, H., Ankem, M. K., & Damodaran, C. (2016). Withaferin-A suppress AKT induced tumor growth in colorectal cancer cells. Oncotarget, 7(12), 13854–13864. https://doi.org/10.18632/oncotarget.7351
  • Tanveer, F., Anwar, M. F., Siraj, B., & Zarina, S. (2022). Evaluation of anti-EGFR potential of quinazoline derivatives using molecular docking: An in silico approach. Biotechnology and Applied Biochemistry, 69(3), 1226–1237. https://doi.org/10.1002/bab.2199
  • Tao, Q., Du, J., Li, X., Zeng, J., Tan, B., Xu, J., Lin, W., & Chen, X.-L. (2020). Network pharmacology and molecular docking analysis on molecular targets and mechanisms of Huashi Baidu formula in the treatment of COVID-19. Drug Development and Industrial Pharmacy, 46(8), 1345–1353. https://doi.org/10.1080/03639045.2020.1788070
  • Van Weelden, G., Bobiński, M., Okła, K., Van Weelden, W. J., Romano, A., & Pijnenborg, J. M. A. (2019). Fucoidan structure and activity in relation to anti-cancer mechanisms. Marine Drugs, 17(1), 32. https://doi.org/10.3390/md17010032
  • Veluthattil, A. C., Sudha, S. P., Kandasamy, S., & Chakkalakkoombil, S. V. (2019). Effect of hypofractionated, palliative radiotherapy on quality of life in late-stage oral cavity cancer: A prospective clinical trial. Indian Journal of Palliative Care, 25(3), 383–390. https://doi.org/10.4103/IJPC.IJPC_115_18
  • Wang, S., Tian, L., Wang, Y., He, J., Kang, Y., Shangguan, Y., Qian, W., Yang, P., & Huang, J. (2022). Identification of alkaloidal compounds from leaves and roots of Stephania succifera by HPLC-QTOF-MS and prediction of potential bioactivity with PharmMapper. Phytochemical Analysis, 33(2), 239–248. https://doi.org/10.1002/pca.3083
  • Wang, T., Cai, B., Ding, M., Su, Z., Liu, Y., & Shen, L. (2019). c-Myc overexpression promotes oral cancer cell proliferation and migration by enhancing glutaminase and glutamine synthetase activity. The American Journal of the Medical Sciences, 358(3), 235–242. https://doi.org/10.1016/j.amjms.2019.05.014
  • Wang, Y., Gu, W., Kui, F., Gao, F., Niu, Y., Li, W., Zhang, Y., Guo, Z., & Du, G. (2021). The mechanism and active compounds of Semen Armeniacae amarum treating coronavirus disease 2019 based on network pharmacology and molecular docking. Food & Nutrition Research, 65. https://doi.org/10.29219/fnr.v65.5623
  • Warnakulasuriya, S. (2009). Causes of oral cancer – An appraisal of controversies. British Dental Journal, 207(10), 471–475. https://doi.org/10.1038/sj.bdj.2009.1009
  • Wu, Y., Gao, L.-J., Fan, Y.-S., Chen, Y., & Li, Q. (2021). Network pharmacology-based analysis on the action mechanism of oleanolic acid to alleviate osteoporosis. ACS Omega, 6(42), 28410–28420. https://doi.org/10.1021/acsomega.1c04825
  • Wu, Z., Pan, X., Deng, C., Cai, M., Yuan, K., Huang, P., & Shi, G. (2022). Mechanism of herb pairs Astragalus mongholicus and Curcuma phaeocaulis Valeton in treating gastric carcinoma: A network pharmacology combines with differential analysis and molecular docking. Evidence-Based Complementary and Alternative Medicine, 2022, 8361431. https://doi.org/10.1155/2022/8361431
  • Yang, L., Hu, Z., Zhu, J., Liang, Q., Zhou, H., Li, J., Fan, X., Zhao, Z., Pan, H., & Fei, B. (2020). Systematic elucidation of the mechanism of quercetin against gastric cancer via network pharmacology approach. BioMed Research International, 2020, 3860213–3860211. https://doi.org/10.1155/2020/3860213
  • Yu, Z., Wu, Y., Ma, Y., Cheng, Y., Song, G., & Zhang, F. (2022). Systematic analysis of the mechanism of aged citrus peel (Chenpi) in oral squamous cell carcinoma treatment via network pharmacology, molecular docking and experimental validation. Journal of Functional Foods, 91, 105012. https://doi.org/10.1016/j.jff.2022.105012
  • Zaki, H., Belhassan, A., Benlyas, M., Lakhlifi, T., & Bouachrine, M. (2021). New dehydroabietic acid (DHA) derivatives with anticancer activity against HepG2 cancer cell lines as a potential drug targeting EGFR kinase domain. CoMFA study and virtual ligand-based screening. Journal of Biomolecular Structure & Dynamics, 39(8), 2993–3003. https://doi.org/10.1080/07391102.2020.1759452
  • Zhang, M., Yuan, Y., Zhou, W., Qin, Y., Xu, K., Men, J., & Lin, M. (2020). Network pharmacology analysis of Chaihu Lizhong Tang treating non-alcoholic fatty liver disease. Computational Biology and Chemistry, 86, 107248. https://doi.org/10.1016/j.compbiolchem.2020.107248
  • Zhang, N., Gao, L., Ren, W., Li, S., Zhang, D., Song, X., Zhao, C., & Zhi, K. (2020). Fucoidan affects oral squamous cell carcinoma cell functions in vitro by regulating FLNA-derived circular RNA. Annals of the New York Academy of Sciences, 1462(1), 65–78. https://doi.org/10.1111/nyas.14190
  • Zhao, S., Jiang, Y., Zhao, J., Li, H., Yin, X., Wang, Y., Xie, Y., Chen, X., Lu, J., Dong, Z., & Liu, K. (2018). Quercetin-3-methyl ether inhibits esophageal carcinogenesis by targeting the AKT/mTOR/p70S6K and MAPK pathways. Molecular Carcinogenesis, 57(11), 1540–1552. https://doi.org/10.1002/mc.22876

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.