155
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of inhibitory effect of sulfated chitosan oligomer on human heparanase enzyme: in silico and in vitro studies

, ORCID Icon &
Received 16 Oct 2023, Accepted 04 Feb 2024, Published online: 27 Feb 2024

References

  • Akmalovna, I. G., Nosirugli, U. B., & Makhamatdinovich, T. S. (2022). Modification of vermiculite and bentonite clay with chitosan for use cleaning textile waste water. Asian Journal of Research in Social Sciences and Humanities, 12(5), 344–349. https://doi.org/10.5958/2249-7315.2022.00298.2
  • Algul, O., Ersan, R. H., Alagoz, M. A., Duran, N., & Burmaoglu, S. (2021). An efficient synthesis of novel di-heterocyclic benzazole derivatives and evaluation of their antiproliferative activities. Journal of Biomolecular Structure & Dynamics, 39(18), 6926–6938. https://doi.org/10.1080/07391102.2020.1803966
  • Atallah, J., Khachfe, H. H., Berro, J., & Assi, H. I. (2020). The use of heparin and heparin-like molecules in cancer treatment: A review. Cancer Treatment and Research Communications, 24, 100192. https://doi.org/10.1016/j.ctarc.2020.100192
  • Baharlouei, P., & Rahman, A. (2022). Chitin and chitosan: Prospective biomedical applications in drug delivery, cancer treatment, and wound healing. Marine Drugs, 20(7), 460. https://doi.org/10.3390/md20070460
  • Bellis, S. L., Reis, C. A., Varki, A., Kannagi, R., & Stanley, P. (2022). Glycosylation changes in cancer (4th edition). Cold Spring Harbor Laboratory Press.
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., & Sacerdoti, F. D. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters [Paper presentation]. SC'06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. New York, NY, US: Association for Computing Machinery.
  • Chhabra, M., & Ferro, V. (2020). PI-88 and related heparan sulfate mimetics. Heparanase: From basic research to clinical applications (pp. 473–491. Springer International Publishing.
  • Coombe, D. R., & Gandhi, N. S. (2019). Heparanase: A challenging cancer drug target. Frontiers in Oncology, 9, 1316. https://doi.org/10.3389/fonc.2019.01316
  • Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364. https://doi.org/10.1093/nar/gkz382
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O., & Zoete, V. (2014). SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Research, 42, W32–W38. https://doi.org/10.1093/nar/gku293
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Hammond, E., Li, C. P., & Ferro, V. (2010). Development of a colorimetric assay for heparanase activity suitable for kinetic analysis and inhibitor screening. Analytical Biochemistry, 396(1), 112–116. https://doi.org/10.1016/j.ab.2009.09.007
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • Ilan, N., Elkin, M., & Vlodavsky, I. (2006). Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. The İnternational Journal of Biochemistry & Cell Biology, 38(12), 2018–2039. https://doi.org/10.1016/j.biocel.2006.06.004
  • Ishida, K., Hirai, G., Murakami, K., Teruya, T., Simizu, S., Sodeoka, M., & Osada, H. (2004). Structure-based design of a selective heparanase inhibitor as an antimetastatic agent. Molecular Cancer Therapeutics, 3(9), 1069–1077. https://doi.org/10.1158/1535-7163.1069.3.9
  • Karoli, T., Liu, L., Fairweather, J. K., Hammond, E., Li, C. P., Cochran, S., Bergefall, K., Trybala, E., Addison, R. S., & Ferro, V. (2005). Synthesis, biological activity, and preliminary pharmacokinetic evaluation of analogues of a phosphosulfomannan angiogenesis inhibitor (PI-88). Journal of Medicinal Chemistry, 48(26), 8229–8236. https://doi.org/10.1021/jm050618p
  • Khasraw, M., Pavlakis, N., McCowatt, S., Underhill, C., Begbie, S., de Souza, P., Boyce, A., Parnis, F., Lim, V., Harvie, R., & Marx, G. (2010). Multicentre phase I/II study of PI-88, a heparanase inhibitor in combination with docetaxel in patients with metastatic castrate-resistant prostate cancer. Annals of Oncology, 21(6), 1302–1307. https://doi.org/10.1093/annonc/mdp524
  • Kocabay, S., & Akkaya, B. (2020). Preparation of sulfatide mimicking oleic acid sulfated chitosan as a potential inhibitor for metastasis. International Journal of Biological Macromolecules, 147, 792–798. https://doi.org/10.1016/j.ijbiomac.2019.10.119
  • Kocabay, S., Bahar, M. R., Tekin, S., Akkaya, R., & Akkaya, B. (2021). Chemical and biological characterization of sulfated chitosan oligomer as heparin mimics. Polymers and Polymer Composites, 29(9), S1023–S1032. https://doi.org/10.1177/09673911211035068
  • Kocabay, S., Alagöz, M. A., Bakir, H. G., & Akkaya, B. (2022). In silico studies of synthetic sulfatide as a potential drug candidate against Covid-19. Cumhuriyet Science Journal, 43(2), 238–245. https://doi.org/10.17776/csj.1081777
  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Masola, V., Zaza, G., Gambaro, G., Franchi, M., & Onisto, M. (2020). Role of heparanase in tumor progression: Molecular aspects and therapeutic options. Seminars in Cancer Biology, 62, 86–98. https://doi.org/10.1016/j.semcancer.2019.07.014
  • Masola, V., Greco, N., Gambaro, G., Franchi, M., & Onisto, M. (2022). Heparanase as active player in endothelial glycocalyx remodeling. Matrix Biology plus, 13, 100097. https://doi.org/10.1016/j.mbplus.2021.100097
  • Mohan, C. D., Hari, S., Preetham, H. D., Rangappa, S., Barash, U., Ilan, N., Nayak, S. C., Gupta, V. K., Vlodavsky, I., Rangappa, K. S., & Basappa. (2019). Targeting heparanase in cancer: İnhibition by synthetic, chemically modified, and natural compounds. Iscience, 15, 360–390. https://doi.org/10.1016/j.isci.2019.04.034
  • Ngaha, T. Y. S., Zhilenkova, A. V., Essogmo, F. E., Uchendu, I. K., Abah, M. O., Fossa, L. T., Sangadzhieva, Z. D., D Sanikovich, V., S Rusanov, A., N Pirogova, Y., Boroda, A., Rozhkov, A., Kemfang Ngowa, J. D., N Bagmet, L., & I Sekacheva, M. (2023). Angiogenesis in lung cancer: Understanding the roles of growth factors. Cancers, 15(18), 4648. https://doi.org/10.3390/cancers15184648
  • Olsson, M. H., Søndergaard, C. R., Rostkowski, M., & Jensen, J. H. (2011). PROPKA3: Consistent treatment of internal and surface residues in empirical p K a predictions. Journal of Chemical Theory and Computation, 7(2), 525–537. https://doi.org/10.1021/ct100578z
  • Ozten, O., Kurt, B. Z., Sonmez, F., Dogan, B., & Durdagi, S. (2021). Synthesis, molecular docking and molecular dynamics studies of novel tacrine-carbamate derivatives as potent cholinesterase inhibitors. Bioorganic Chemistry, 115, 105225. https://doi.org/10.1016/j.bioorg.2021.105225
  • Parish, C. R., Freeman, C., Brown, K. J., Francis, D. J., & Cowden, W. B. (1999). Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Research, 59(14), 3433–3441. http://cancerres.aacrjournals.org/content/59/14/3433
  • Peele, K. A., Durthi, C. P., Srihansa, T., Krupanidhi, S., Ayyagari, V. S., Babu, D. J., Indira, M., Reddy, A. R., & Venkateswarulu, T. (2020). Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: A computational study. Informatics in Medicine Unlocked, 19, 100345. https://doi.org/10.1016/j.imu.2020.100345
  • Pisano, C., Vlodavsky, I., Ilan, N., & Zunino, F. (2014). The potential of heparanase as a therapeutic target in cancer. Biochemical Pharmacology, 89(1), 12–19. https://doi.org/10.1016/j.bcp.2014.02.010
  • Revuelta, J., Fraile, I., Monterrey, D. T., Peña, N., Benito-Arenas, R., Bastida, A., Fernández-Mayoralas, A., & García-Junceda, E. (2021). Heparanized chitosans: Towards the third generation of chitinous biomaterials. Materials Horizons, 8(10), 2596–2614. https://doi.org/10.1039/d1mh00728a
  • Şener, D., Bulut, H. N., & Bayir, A. G. (2021). Probiotics and relationship between probiotics and cancer types. Bezmialem Science, 9(4), 490–497. https://doi.org/10.14235/bas.galenos.2021.5375]
  • Vardhan, S., & Sahoo, S. K. (2020). In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19. Computers in Biology and Medicine, 124, 103936. https://doi.org/10.1016/j.compbiomed.2020.103936
  • Wang, T., Yin, H., Wang, W., & Wang, M. (2012). Preparation, characterization and in vitro anti-metastasis activity of glucan derivatives. Carbohydrate Polymers, 87(3), 1913–1918. https://doi.org/10.1016/j.carbpol.2011.09.083
  • Yip, G. W., Smollich, M., & Götte, M. (2006). Therapeutic value of glycosaminoglycans in cancer. Molecular Cancer Therapeutics, 5(9), 2139–2148. https://doi.org/10.1158/1535-7163.MCT-06-0082
  • Zhang, Y., & Cui, L. (2023). Discovery and development of small-molecule heparanase inhibitors. Bioorganic & Medicinal Chemistry, 90, 117335. https://doi.org/10.1016/j.bmc.2023.117335
  • Zhao, H., Liu, H., Chen, Y., Xin, X., Li, J., Hou, Y., Zhang, Z., Zhang, X., Xie, C., Geng, M., & Ding, J. (2006). Oligomannurarate sulfate, a novel heparanase inhibitor simultaneously targeting basic fibroblast growth factor, combats tumor angiogenesis and metastasis. Cancer Research, 66(17), 8779–8787. https://doi.org/10.1158/0008-5472.CAN-06-1382

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.