120
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Unraveling the atomic mechanisms underlying glyphosate insensitivity in EPSPS: implications of distal mutations

, , , , , & show all
Received 08 Dec 2023, Accepted 08 Feb 2024, Published online: 24 Feb 2024

References

  • Alarcón-Reverte, R., García, A., Urzúa, J., & Fischer, A. J. (2013). Resistance to Glyphosate in Junglerice (Echinochloa colona) from California. Weed Science, 61(1), 48–54. https://doi.org/10.1614/WS-D-12-00073.1
  • Amrhein, N., Deus, B., Gehrke, P., & Steinrücken, H. C. (1980). The site of the inhibition of the shikimate pathway by glyphosate: II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiology, 66(5), 830–834. https://doi.org/10.1104/pp.66.5.830
  • Baerson, S. R., Rodriguez, D. J., Tran, M., Feng, Y., Biest, N. A., & Dill, G. M. (2002). Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiology, 129(3), 1265–1275. https://doi.org/10.1104/pp.001560
  • Baylis, A. D. (2000). Why glyphosate is a global herbicide: Strengths, weaknesses and prospects. Pest Management Science, 56(4), 299–308. https://doi.org/10.1002/(SICI)1526-4998(200004)56:4<299::AID-PS144>3.0.CO;2-K
  • Boocock, M. R., & Coggins, J. R. (1983). Kinetics of 5-enolpyruvylshikimate-3-phosphate synthase inhibition by glyphosate. FEBS Letters, 154(1), 127–133. https://doi.org/10.1016/0014-5793(83)80888-6
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Chinnadurai, P., Stojšin, D., Liu, K., Frierdich, G. E., Glenn, K. C., Geng, T., Schapaugh, A., Huang, K., Deffenbaugh, A. E., Liu, Z. L., & Burzio, L. A. (2018). Variability of CP4 EPSPS expression in genetically engineered soybean (Glycine max L. Merrill). Transgenic Research, 27(6), 511–524. https://doi.org/10.1007/s11248-018-0092-z
  • Duke, S. O., & Powles, S. B. (2008). Glyphosate: A once-in-a-century herbicide. Pest Management Science, 64(4), 319–325. https://doi.org/10.1002/ps.1518
  • Fazel-Najafabadi, E., Vahdat Ahar, E., Fattahpour, S., & Sedghi, M. (2015). Structural and functional impact of missense mutations in TPMT: An integrated computational approach. Computational Biology and Chemistry, 59 Pt A, 48–55. https://doi.org/10.1016/j.compbiolchem.2015.09.004
  • Feng, D., Soric, A., & Boutin, O. (2020). Treatment technologies and degradation pathways of glyphosate: A critical review. The Science of the Total Environment, 742, 140559. https://doi.org/10.1016/j.scitotenv.2020.140559
  • Ferreira, M. F. J., Franca, E. F., & Leite, F. L. (2017). Unbinding pathway energy of glyphosate from the EPSPs enzyme binding site characterized by steered molecular dynamics and potential of mean force. Journal of Molecular Graphics & Modelling, 72, 43–49. https://doi.org/10.1016/j.jmgm.2016.11.010
  • Fonseca, E. C. M., da Costa, K. S., Lameira, J., Alves, C. N., & Lima, A. H. (2020). Investigation of the target-site resistance of EPSP synthase mutants P106T and T102I/P106S against glyphosate. RSC Advances, 10(72), 44352–44360. https://doi.org/10.1039/d0ra09061a
  • Funke, T., Han, H., Healy-Fried, M. L., Fischer, M., & Schönbrunn, E. (2006). Molecular basis for the herbicide resistance of Roundup Ready crops. Proceedings of the National Academy of Sciences of the United States of America, 103(35), 13010–13015. https://doi.org/10.1073/pnas.0603638103
  • Gherekhloo, J., Fernández-Moreno, P. T., Alcántara-de la Cruz, R., Sánchez-González, E., Cruz-Hipolito, H. E., Domínguez-Valenzuela, J. A., & De Prado, R. (2017). Pro-106-Ser mutation and EPSPS overexpression acting together simultaneously in glyphosate-resistant goosegrass (Eleusine indica). Scientific Reports, 7(1), 6702. https://doi.org/10.1038/s41598-017-06772-1
  • Guo, J., Li, M., Zhang, Y., Xi, L., & Cui, F. (2021). Conformational dynamics is critical for the allosteric inhibition of cGAS upon acetyl-mimic mutations. Physical Chemistry Chemical Physics: PCCP, 23(3), 2154–2165. https://doi.org/10.1039/d0cp05871h
  • Heap, I., & Duke, S. O. (2018). Overview of glyphosate-resistant weeds worldwide. Pest Management Science, 74(5), 1040–1049. https://doi.org/10.1002/ps.4760
  • Helander, M., Saloniemi, I., & Saikkonen, K. (2012). Glyphosate in northern ecosystems. Trends in Plant Science, 17(10), 569–574. https://doi.org/10.1016/j.tplants.2012.05.008
  • He, M., Nie, Y. F., & Xu, P. (2003). A T42M substitution in bacterial 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) generates enzymes with increased resistance to glyphosate. Bioscience, Biotechnology, and Biochemistry, 67(6), 1405–1409. https://doi.org/10.1271/bbb.67.1405
  • He, M., Yang, Z. Y., Nie, Y. F., Wang, J., & Xu, P. (2001). A new type of class I bacterial 5-enopyruvylshikimate-3-phosphate synthase mutants with enhanced tolerance to glyphosate. Biochimica et Biophysica Acta, 1568(1), 1–6. https://doi.org/10.1016/S0304-4165(01)00181-7
  • Jasieniuk, M., Ahmad, R., Sherwood, A. M., Firestone, J. L., Perez-Jones, A., Lanini, W. T., Mallory-Smith, C., & Stednick, Z. (2008). Glyphosate-Resistant Italian Ryegrass (Lolium multiflorum) in California: Distribution, response to glyphosate, and molecular evidence for an altered target enzyme. Weed Science, 56(4), 496–502. https://doi.org/10.1614/WS-08-020.1
  • Jencks, W. P. (1969). Catalysis in chemistry and enzymology. McGraw Hill.
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kaundun, S. S., Zelaya, I. A., Dale, R. P., Lycett, A. J., Carter, P., Sharples, K. R., & McIndoe, E. (2008). Importance of the P106S target-site mutation in conferring resistance to glyphosate in a goosegrass (eleusine indica) population from the Philippines. Weed Science, 56(5), 637–646. https://doi.org/10.1614/WS-07-148.1
  • Kumar, P., Kumari, P., Sachan, S. G., & Poddar, R. (2018). Mutational analysis of phenolic acid decarboxylase from Enterobacter sp. Px6-4. towards enhancement of binding affinity: A computational approach. Computational Biology and Chemistry, 76, 245–255. https://doi.org/10.1016/j.compbiolchem.2018.06.004
  • Li, M., Bao, Y., Xu, R., Zhang, X., La, H., & Guo, J. (2022). Mechanism of enhanced sensitivity of mutated beta-adrenergic-like octopamine receptor to amitraz in honeybee Apis mellifera: An insight from MD simulations. Pest Management Science, 78(12), 5423–5431. https://doi.org/10.1002/ps.7164
  • Li, M., & Guo, J. (2021). Deciphering the T790M/L858R-selective inhibition mechanism of an allosteric inhibitor of EGFR: Insights from molecular simulations. ACS Chemical Neuroscience, 12(3), 462–472. https://doi.org/10.1021/acschemneuro.0c00633
  • Lu, X., Shu, N., Wang, D., Wang, J., Chen, X., Zhang, B., Wang, S., Guo, L., Chen, C., & Ye, W. (2020). Genome-wide identification and expression analysis of PUB genes in cotton. BMC Genomics, 21(1), 213. https://doi.org/10.1186/s12864-020-6638-5
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Mao, C., Xie, H., Chen, S., Valverde, B. E., & Qiang, S. (2016). Multiple mechanism confers natural tolerance of three lilyturf species to glyphosate. Planta, 243(2), 321–335. https://doi.org/10.1007/s00425-015-2408-z
  • Mao, C., Xie, H., Chen, S., Valverde, B. E., & Qiang, S. (2017). Error-prone PCR mutation of Ls-EPSPS gene from Liriope spicata conferring to its enhanced glyphosate-resistance. Pesticide Biochemistry and Physiology, 141, 90–95. https://doi.org/10.1016/j.pestbp.2016.12.004
  • Marques, M. R., Vaso, A., Neto, J. R., Fossey, M. A., Oliveira, J. S., Basso, L. A., dos Santos, D. S., de Azevedo Junior, W. F., & Palma, M. S. (2008). Dynamics of glyphosate-induced conformational changes of Mycobacterium tuberculosis 5-enolpyruvylshikimate-3-phosphate synthase (EC 2.5.1.19) determined by hydrogen-deuterium exchange and electrospray mass spectrometry. Biochemistry, 47(28), 7509–7522. https://doi.org/10.1021/bi800134y
  • Mizyed, S., Wright, J. E. I., Byczynski, B., & Berti, P. J. (2003). Identification of the catalytic residues of AroA (enolpyruvylshikimate 3-phosphate synthase) using partitioning analysis. Biochemistry, 42(23), 6986–6995. https://doi.org/10.1021/bi027217l
  • Nandula, V. K., Ray, J. D., Ribeiro, D. N., Pan, Z., & Reddy, K. N. (2013). Glyphosate resistance in tall waterhemp (amaranthus tuberculatus) from Mississippi is due to both altered target-site and nontarget-site mechanisms. Weed Science, 61(3), 374–383. https://doi.org/10.1614/WS-D-12-00155.1
  • Neves Cruz, J., da Costa, K. S., de Carvalho, T. A. A., & de Alencar, N. A. N. (2020). Measuring the structural impact of mutations on cytochrome P450 21A2, the major steroid 21-hydroxylase related to congenital adrenal hyperplasia. Journal of Biomolecular Structure & Dynamics, 38(5), 1425–1434. https://doi.org/10.1080/07391102.2019.1607560
  • Ng, C. H., Wickneswari, R., Salmijah, S., Teng, Y. T., & Ismail, B. S. (2003). Gene polymorphisms in glyphosate-resistant and -susceptible biotypes of Eleusine indica from Malaysia. Weed Research, 43(2), 108–115. https://doi.org/10.1046/j.1365-3180.2003.00322.x
  • Palhano-Fontes, F., Barreto, D., Onias, H., Andrade, K. C., Novaes, M. M., Pessoa, J. A., Mota-Rolim, S. A., Osório, F. L., Sanches, R., Dos Santos, R. G., Tófoli, L. F., de Oliveira Silveira, G., Yonamine, M., Riba, J., Santos, F. R., Silva-Junior, A. A., Alchieri, J. C., Galvão-Coelho, N. L., Lobão-Soares, B., … Araújo, D. B. (2019). Rapid antidepressant effects of the psychedelic ayahuasca in treatment-resistant depression: A randomized placebo-controlled trial. Psychological Medicine, 49(4), 655–663. https://doi.org/10.1017/s0033291718001356
  • Pan, L., & Aller, S. G. (2015). Tools and procedures for visualization of proteins and other biomolecules. Current Protocols in Molecular Biology, 110, 19.12.1–19.12.47. https://doi.org/10.1002/0471142727.mb1912s110
  • Park, H., Hilsenbeck, J. L., Kim, H. J., Shuttleworth, W. A., Park, Y. H., Evans, J. N., & Kang, C. (2004). Structural studies of Streptococcus pneumoniae EPSP synthase in unliganded state, tetrahedral intermediate-bound state and S3P-GLP-bound state. Molecular Microbiology, 51(4), 963–971. https://doi.org/10.1046/j.1365-2958.2003.03885.x
  • Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., III, DeBolt, S., Ferguson, D., Seibel, G., & Kollman, P. (1995). AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications, 91(1-3), 1–41. https://doi.org/10.1016/0010-4655(95)00041-D
  • Peng, X., Lu, C., Pang, J., Liu, Z., & Lu, D. (2021). A distal regulatory strategy of enzymes: From local to global conformational dynamics. Physical Chemistry Chemical Physics: PCCP, 23(39), 22451–22465. https://doi.org/10.1039/d1cp01519b
  • Perez-Jones, A., Park, K.-W., Polge, N., Colquhoun, J., & Mallory-Smith, C. A. (2007). Investigating the mechanisms of glyphosate resistance in Lolium multiflorum. Planta, 226(2), 395–404. https://doi.org/10.1007/s00425-007-0490-6
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Schönbrunn, E., Eschenburg, S., Shuttleworth, W. A., Schloss, J. V., Amrhein, N., Evans, J. N., & Kabsch, W. (2001). Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proceedings of the National Academy of Sciences of the United States of America, 98(4), 1376–1380. https://doi.org/10.1073/pnas.98.4.1376
  • Silverstein, T. P. (2021). How enzymes harness highly unfavorable proton transfer reactions. Protein Science: A Publication of the Protein Society, 30(4), 735–744. https://doi.org/10.1002/pro.4037
  • Stallings, W. C., Abdel-Meguid, S. S., Lim, L. W., Shieh, H. S., Dayringer, H. E., Leimgruber, N. K., Stegeman, R. A., Anderson, K. S., Sikorski, J. A., Padgette, S. R., & Kishore, G. M. (1991). Structure and topological symmetry of the glyphosate target 5-enolpyruvylshikimate-3-phosphate synthase: A distinctive protein fold. Proceedings of the National Academy of Sciences of the United States of America, 88(11), 5046–5050. https://doi.org/10.1073/pnas.88.11.5046
  • Steinrücken, H. C., & Amrhein, N. (1980). The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochemical and Biophysical Research Communications, 94(4), 1207–1212. https://doi.org/10.1016/0006-291x(80)90547-1
  • Steinrücken, H. C., & Amrhein, N. (1984). 5-Enolpyruvylshikimate-3-phosphate synthase of Klebsiella pneumoniae. 1. Purification and properties. European Journal of Biochemistry, 143(2), 341–349. https://doi.org/10.1111/j.1432-1033.1984.tb08378.x
  • Tian, Y.-S., Xu, J., Xiong, A.-S., Zhao, W., Gao, F., Fu, X.-Y., Peng, R.-H., & Yao, Q.-H. (2012). Functional characterization of Class II 5-enopyruvylshikimate-3-phosphate synthase from Halothermothrix orenii H168 in Escherichia coli and transgenic Arabidopsis. Applied Microbiology and Biotechnology, 93(1), 241–250. https://doi.org/10.1007/s00253-011-3443-8
  • Timmers, L. F. S. M., Neto, A. M. S., Montalvão, R. W., Basso, L. A., Santos, D. S., & Norberto de Souza, O. (2017). EPSP synthase flexibility is determinant to its function: Computational molecular dynamics and metadynamics studies. Journal of Molecular Modeling, 23(7), 197. https://doi.org/10.1007/s00894-017-3372-2
  • Tohge, T., Watanabe, M., Hoefgen, R., & Fernie, A. R. (2013). The evolution of phenylpropanoid metabolism in the green lineage. Critical Reviews in Biochemistry and Molecular Biology, 48(2), 123–152. https://doi.org/10.3109/10409238.2012.758083
  • Torshin, I. Y., Weber, I. T., & Harrison, R. W. (2002). Geometric criteria of hydrogen bonds in proteins and identification of “bifurcated” hydrogen bonds. Protein Engineering, 15(5), 359–363. https://doi.org/10.1093/protein/15.5.359
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Wakelin, A., & Preston, C. (2006). A target-site mutation is present in a glyphosate-resistant Lolium rigidum population. Weed Research, 46(5), 432–440. https://doi.org/10.1111/j.1365-3180.2006.00527.x
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wang, X., Zhang, X., Peng, C., Shi, Y., Li, H., Xu, Z., & Zhu, W. (2021). D3DistalMutation: A database to explore the effect of distal mutations on enzyme activity. Journal of Chemical Information and Modeling, 61(5), 2499–2508. https://doi.org/10.1021/acs.jcim.1c00318
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Yu, Q., Cairns, A., & Powles, S. (2007). Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype. Planta, 225(2), 499–513. https://doi.org/10.1007/s00425-006-0364-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.