200
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In silico design, synthesis and antitubercular activity of novel 2-acylhydrazono-5-arylmethylene-4-thiazolidinones as enoyl-acyl carrier protein reductase inhibitors

, , , , , , & show all
Received 24 Oct 2023, Accepted 12 Feb 2024, Published online: 07 Mar 2024

References

  • WHO. (2022). Global Tuberculosis Report. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022
  • Abdel-Rhman, M. H., Hussien, M. A., Mahmoud, H. M., & Hosny, N. M. (2019). Synthesis, characterization, molecular docking and cytotoxicity studies on N-benzyl-2-isonicotinoylhydrazine-1-carbothioamide and its metal complexes. Journal of Molecular Structure, 1196, 417–428. https://doi.org/10.1016/j.molstruc.2019.06.092
  • Andres, C. J., Bronson, J. J., D'Andrea, S. V., Deshpande, M. S., Falk, P. J., Grant-Young, K. A., Harte, W. E., Ho, H. T., Misco, P. F., Robertson, J. G., Stock, D., Sun, Y., & Walsh, A. W. (2000). 4-Thiazolidinones: Novel inhibitors of the bacterial enzyme MurB. Bioorganic & Medicinal Chemistry Letters, 10(8), 715–717. https://doi.org/10.1016/s0960-894x(00)00073-1
  • Aridoss, G., Amirthaganesan, S., Kim, M. S., Kim, J. T., & Jeong, Y. T. (2009). Synthesis, spectral and biological evaluation of some new thiazolidinones and thiazoles based on t-3-alkyl-r-2,c-6-diarylpiperidin-4-ones. European Journal of Medicinal Chemistry, 44(10), 4199–4210. https://doi.org/10.1016/j.ejmech.2009.05.015
  • Berman, H., Henrick, K., & Nakamura, H. (2003). Announcing the worldwide Protein Data Bank. Nature Structural & Molecular Biology, 10(12), 980–980. https://doi.org/10.1038/nsb1203-980
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bhat, Z. S., Rather, M. A., Maqbool, M., & Ahmad, Z. (2018). Drug targets exploited in Mycobacterium tuberculosis: Pitfalls and promises on the horizon. Biomedicine & Pharmacotherapy, 103, 1733–1747. https://doi.org/10.1016/j.biopha.2018.04.176
  • Bhat, Z. S., Rather, M. A., Maqbool, M., Ul Lah, H., Yousuf, S. K., & Ahmad, Z. (2017). Cell wall: A versatile fountain of drug targets in Mycobacterium tuberculosis. Biomedicine & Pharmacotherapy, 95, 1520–1534. https://doi.org/10.1016/j.biopha.2017.09.036
  • Brennan, P. J. (2003). Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinburgh, Scotland), 83(1-3), 91–97. https://doi.org/10.1016/S1472-9792(02)00089-6
  • Çakir, G., Küçükgüzel, İ., Guhamazumder, R., Tatar, E., Manvar, D., Basu, A., Patel, B. A., Zia, J., Talele, T. T., & Kaushik-Basu, N. (2015). Novel 4-thiazolidinones as non-nucleoside ınhibitors of hepatitis C virus NS5B RNA-dependent RNA polymerase. Archiv Der Pharmazie, 348(1), 10–22. https://doi.org/10.1002/ardp.201400247
  • Campaniço, A., Moreira, R., & Lopes, F. (2018). Drug discovery in tuberculosis. New drug targets and antimycobacterial agents. European Journal of Medicinal Chemistry, 150, 525–545. https://doi.org/10.1016/j.ejmech.2018.03.020
  • Cansız, A., Orek, C., Koparir, M., Koparir, P., & Cetin, A. (2012). 4-Allyl-5-pyridin-4-yl-2,4-dihydro-3H-1,2,4-triazole-3-thione: Synthesis, experimental and theoretical characterization. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 91, 136–145. https://doi.org/10.1016/j.saa.2012.01.027
  • Ceylan, S., Bektas, H., Bayrak, H., Demirbas, N., Alpay-Karaoglu, S., & Ulker, S. (2013). Syntheses and biological activities of new hybrid molecules containing different heterocyclic moieties. Archiv Der Pharmazie, 346(10), 743–756. https://doi.org/10.1002/ardp.201300161
  • Chetty, S., Ramesh, M., Singh-Pillay, A., & Soliman, M. E. S. (2017). Recent advancements in the development of anti-tuberculosis drugs. Bioorganic & Medicinal Chemistry Letters, 27(3), 370–386. https://doi.org/10.1016/j.bmcl.2016.11.084
  • Collins, L., & Franzblau, S. G. (1997). Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrobial Agents and Chemotherapy, 41(5), 1004–1009. https://doi.org/10.1128/AAC.41.5.1004
  • Devi, P. B., Samala, G., Sridevi, J. P., Saxena, S., Alvala, M., Salina, E. G., Sriram, D., & Yogeeswari, P. (2014). Structure-guided design of thiazolidine derivatives as Mycobacterium tuberculosis pantothenate synthetase ınhibitors. ChemMedChem. 9(11), 2538–2547. https://doi.org/10.1002/cmdc.201402171
  • Doğan, Ş. D., Gündüz, M. G., Doğan, H., Krishna, V. S., Lherbet, C., & Sriram, D. (2020). Design and synthesis of thiourea-based derivatives as Mycobacterium tuberculosis growth and enoyl acyl carrier protein reductase (InhA) inhibitors. European Journal of Medicinal Chemistry, 199, 112402. https://doi.org/10.1016/j.ejmech.2020.112402
  • Duan, X., Xiang, X., & Xie, J. (2014). Crucial components of Mycobacterium type II fatty acid biosynthesis (Fas-II) and their inhibitors. FEMS Microbiology Letters, 360(2), 87–99. https://doi.org/10.1111/1574-6968.12597
  • Gordon, S. V., & Parish, T. (2018). Microbe profile: Mycobacterium tuberculosis: humanity’s deadly microbial foe. Microbiology (Reading, England), 164(4), 437–439. https://doi.org/10.1099/mic.0.000601
  • Hamulakova, S., Janovec, L., Hrabinova, M., Spilovska, K., Korabecny, J., Kristian, P., Kuca, K., & Imrich, J. (2014). Synthesis and biological evaluation of novel tacrine derivatives and tacrine-coumarin hybrids as cholinesterase ınhibitors. Journal of Medicinal Chemistry, 57(16), 7073–7084. https://doi.org/10.1021/jm5008648
  • Hordiichuk, O. R., Kinzhybalo, V. V., Goreshnik, E. A., Slyvka, Y. I., Krawczyk, M. S., & Mys’kiv, M. G. (2017). Influence of apical ligands on Cu-(C=C) interaction in copper(I) halides (Cl-, Br-, I-) pi-complexes with an 1,2,4-triazole allyl-derivative: Syntheses, crystal structures and NMR spectroscopy. Journal of Organometallic Chemistry, 838, 1–8. https://doi.org/10.1016/j.jorganchem.2017.03.022
  • Iqbal, R., Zamani, K., & Rama, N. H. (1996). Synthesis of 2,4-dihydro-4-(2-phenylethyl)-5-(isomeric pyridyl)-3H-1,2,4-triazole-3-thiones and their derivatives. Turkish Journal of Chemistry, 20(4), 295–301.
  • Islam, M. M., Hameed, H. M. A., Mugweru, J., Chhotaray, C., Wang, C. W., Tan, Y. J., Liu, J. X., Li, X. J., Tan, S. Y., Ojima, I., Yew, W. W., Nuermberger, E., Lamichhane, G., & Zhang, T. Y. (2017). Drug resistance mechanisms and novel drug targets for tuberculosis therapy. Journal of Genetics and Genomics = Yi Chuan Xue Bao, 44(1), 21–37. https://doi.org/10.1016/j.jgg.2016.10.002
  • Keleş Atıcı, R., Doğan, Ş. D., Gündüz, M. G., Krishna, V. S., Chebaiki, M., Homberset, H., Lherbet, C., Mourey, L., & Tønjum, T. (2022). Urea derivatives carrying a thiophenylthiazole moiety: Design, synthesis, and evaluation of antitubercular and InhA inhibitory activities. Drug Development Research, 83(6), 1292–1304. https://doi.org/10.1002/ddr.21958
  • Korosi, J. (1962). 4-Mono(disubstituted 1-isonicotinoyl thiosemicarbazides (Hungary Patent No. HU148949).
  • Krishna, V. S., Zheng, S., Rekha, E. M., Guddat, L. W., & Sriram, D. (2019). Discovery and evaluation of novel Mycobacterium tuberculosis ketol-acid reductoisomerase inhibitors as therapeutic drug leads. Journal of Computer-Aided Molecular Design, 33(3), 357–366. https://doi.org/10.1007/s10822-019-00184-1
  • Küçükgüzel, S. G., Oruç, E. E., Rollas, S., Sahin, F., & Ozbek, A. (2002). Synthesis, characterisation and biological activity of novel 4-thiazolidinones, 1,3,4-oxadiazoles and some related compounds. European Journal of Medicinal Chemistry, 37(3), 197–206. https://doi.org/10.1016/S0223-5234(01)01326-5
  • Küçükgüzel, I., Satılmış, G., Gurukumar, K. R., Basu, A., Tatar, E., Nichols, D. B., Talele, T. T., & Kaushik-Basu, N. (2013). 2-Heteroarylimino-5-arylidene-4-thiazolidinones as a new class of non-nucleoside inhibitors of HCV NS5B polymerase. European Journal of Medicinal Chemistry, 69, 931–941. https://doi.org/10.1016/j.ejmech.2013.08.043
  • Kulabaş, N., Türe, A., Bozdeveci, A., Krishna, V. S., Alpay Karaoğlu, Ş., Sriram, D., & Küçükgüzel, İ. (2022). Novel fluoroquinolones containing 2-arylamino-2-oxoethyl fragment: Design, synthesis, evaluation of antibacterial and antituberculosis activities and molecular modeling studies. Journal of Heterocyclic Chemistry, 59(5), 909–926. https://doi.org/10.1002/jhet.4430
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4–17. https://doi.org/10.1016/j.addr.2012.09.019
  • Manvar, D., Küçükgüzel, İ., Erensoy, G., Tatar, E., Deryabaşoğulları, G., Reddy, H., Talele, T. T., Cevik, O., & Kaushik-Basu, N. (2016). Discovery of conjugated thiazolidinone-thiadiazole scaffold as anti-dengue virus polymerase inhibitors. Biochemical and Biophysical Research Communications, 469(3), 743–747. https://doi.org/10.1016/j.bbrc.2015.12.042
  • Petrou, A., Zagaliotis, P., Theodoroula, N. F., Mystridis, G. A., Vizirianakis, I. S., Walsh, T. J., & Geronikaki, A. (2022). Thiazole/thiadiazole/benzothiazole based thiazolidin-4-one derivatives as potential ınhibitors of main protease of SARS-CoV-2. Molecules (Basel, Switzerland), 27(7), 2180. https://doi.org/10.3390/molecules27072180
  • Poyraz, O., Jeankumar, V. U., Saxena, S., Schnell, R., Haraldsson, M., Yogeeswari, P., Sriram, D., & Schneider, G. (2013). Structure-guided design of novel thiazolidine ınhibitors of O-acetyl serine sulfhydrylase from Mycobacterium tuberculosis. Journal of Medicinal Chemistry, 56(16), 6457–6466. https://doi.org/10.1021/jm400710k
  • Riccieri, F. M., Porcelli, G. A., & Castellani Pastoris, M. (1967). Thiourea derivatives and their antitubercular activity. Il Farmaco; Edizione Scientifica, 22(2), 114–120.
  • Rodrigues, D. A., Guerra, F. S., Sagrillo, F. S., Pinheiro, P. D. M., Alves, M. A., Thota, S., Chaves, L. S., Sant’Anna, C. M. R., Fernandes, P. D., & Fraga, C. A. M. (2020). Design, synthesis, and pharmacological evaluation of first-in-class multitarget n-acylhydrazone derivatives as selective HDAC6/8 and PI3K alpha ınhibitors. ChemMedChem. 15(6), 539–551. https://doi.org/10.1002/cmdc.201900716
  • Rožman, K., Sosič, I., Fernandez, R., Young, R. J., Mendoza, A., Gobec, S., & Encinas, L. (2017). A new 'golden age’ for the antitubercular target inha. Drug Discovery Today, 22(3), 492–502. https://doi.org/10.1016/j.drudis.2016.09.009
  • Shehata, I. A., & Glennon, R. A. (1987). Mesoionic ısoxazolo[2,3-a]pyrimidinediones and 1,3,4-oxadiazolo[3,2-a]pyrimidinediones as potential adenosine antagonists. Journal of Heterocyclic Chemistry, 24(5), 1291–1295. https://doi.org/10.1002/jhet.5570240511
  • Šink, R., Sosič, I., Živec, M., Fernandez-Menendez, R., Turk, S., Pajk, S., Alvarez-Gomez, D., Lopez-Roman, E. M., Gonzales-Cortez, C., Rullas-Triconado, J., Angulo-Barturen, I., Barros, D., Ballell-Pages, L., Young, R. J., Encinas, L., & Gobec, S. (2015). Design, synthesis, and evaluation of new thiadiazole-based direct ınhibitors of enoyl acyl carrier protein reductase (InhA) for the treatment of tuberculosis. Journal of Medicinal Chemistry, 58(2), 613–624. https://doi.org/10.1021/jm501029r
  • Slepikas, L., Chiriano, G., Perozzo, R., Tardy, S., Kranjc, A., Patthey-Vuadens, O., Ouertatani-Sakouhi, H., Kicka, S., Harrison, C. F., Scrignari, T., Perron, K., Hilbi, H., Soldati, T., Cosson, P., Tarasevicius, E., & Scapozza, L. (2016). In silico driven design and synthesis of rhodanine derivatives as novel antibacterials targeting the enoyl reductase InhA. Journal of Medicinal Chemistry, 59(24), 10917–10928. https://doi.org/10.1021/acs.jmedchem.5b01620
  • Tatar, E., Kucukguzel, I., De Clercq, E., Krishnan, R., & Kaushik-Basu, N. (2012). Synthesis, characterization and antiviral evaluation of 1,3-thiazolidine-4-one derivatives bearing l-valine side chain. Marmara Pharmaceutcal Journal, 3(16), 181–193.), https://doi.org/10.12991/201216397
  • Tatar, E., Kucukguzel, I., Otuk, G., Bilgin, M., De Clercq, E., Andrei, G., Snoeck, R., Pannecouque, C., & Kaushik-Basu, N. (2021). Synthesis, characterization and biological evaluation of 1,3-thiazolidine-4-ones derived from (2S)-2-benzoylamino-3-methylbutanohydrazide hydrazones. Journal of Research in Pharmacy, 25(4)(25(4), 507–518. https://doi.org/10.29228/jrp.41
  • Tatar, E. K. İ., Küçükgüzel, ŞG., Yılmaz-Demircan, F., De Clercq, E., Andrei, G., Snoeck, R., Pannecouque, C., Şahin, F., & Bayrak, Ö. F. (2010). Synthesis, anti-tuberculosis and antiviral activity of novel 2-isonicotinoylhydrazono-5-arylidene-4-thiazolidinones. International Journal of Drug Design and Discovery, 1(1), 19–32.
  • Trawally, M., Demir-Yazıcı, K., Dingiş-Birgül, S.İ., Kaya, K., Akdemir, A., & Güzel-Akdemir, Ö. (2023). Dithiocarbamates and dithiocarbonates containing 6-nitrosaccharin scaffold: Synthesis, antimycobacterial activity and in silico target prediction using ensemble docking-based reverse virtual screening. Journal of Molecular Structure, 1277, 134818. https://doi.org/10.1016/j.molstruc.2022.134818
  • Trotsko, N. (2021). Antitubercular properties of thiazolidin-4-ones - A review. European Journal of Medicinal Chemistry, 215, 113266. https://doi.org/10.1016/j.ejmech.2021.113266
  • Türe, A., Ergül, M., Ergül, M., Altun, A., & Küçükgüzel, İ. (2021). Design, synthesis, and anticancer activity of novel 4-thiazolidinone-phenylaminopyrimidine hybrids. Molecular Diversity, 25(2), 1025–1050. https://doi.org/10.1007/s11030-020-10087-1
  • Yang, S. J., Lee, S. H., Kwak, H. J., & Gong, Y. D. (2013). Regioselective synthesis of 2-amino-substituted 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives via reagent-based cyclization of thiosemicarbazide ıntermediate. The Journal of Organic Chemistry, 78(2), 438–444. https://doi.org/10.1021/jo302324r

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.