111
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The conformational dynamics of Hepatitis C Virus E2 glycoprotein with the increasing number of N-glycosylation unraveled by molecular dynamics simulations

ORCID Icon, ORCID Icon & ORCID Icon
Received 02 Dec 2023, Accepted 12 Feb 2024, Published online: 23 Feb 2024

References

  • Alibay, I., & Bryce, R. A. (2019). Ring puckering landscapes of glycosaminoglycan-related monosaccharides from molecular dynamics simulations. Journal of Chemical Information and Modeling, 59(11), 4729–4741. https://doi.org/10.1021/acs.jcim.9b00529
  • Ardá, A., & Jiménez-Barbero, J. (2018). The recognition of glycans by protein receptors. Insights from NMR spectroscopy. Chemical Communications (Cambridge, England), 54(38), 4761–4769. https://doi.org/10.1039/c8cc01444b
  • Augestad, E. H., Castelli, M., Clementi, N., Ströh, L. J., Krey, T., Burioni, R., Mancini, N., Bukh, J., & Prentoe, J. (2020). Global and local envelope protein dynamics of hepatitis C virus determine broad antibody sensitivity. Science Advances, 6(35), eabb5938. https://doi.org/10.1126/sciadv.abb5938
  • Bao, H., He, W., & Chen, J. (2023). Exploring conformation changes of Janus kinase 2 pseudokinase mediated by mutations through Gaussian accelerated molecular dynamics and principal component analysis. Journal of Biomolecular Structure & Dynamics, 1–18. https://doi.org/10.1080/07391102.2023.2260486
  • Barman, B., Bora, K., Lynrah, K. G., Lyngdoh, W. V., & Jamil, M. (2018). Hepatitis C virus and its genotypes in chronic liver disease patients from Meghalaya, Northeast India. Indian Journal of Medical Microbiology, 36(3), 376–380. https://doi.org/10.4103/ijmm.IJMM_17_371
  • Barone, D., Balasco, N., Autiero, I., & Vitagliano, L. (2017). The dynamic properties of the Hepatitis C Virus E2 envelope protein unraveled by molecular dynamics. Journal of Biomolecular Structure & Dynamics, 35(4), 805–816. https://doi.org/10.1080/07391102.2016.1162198
  • Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Blackard, J. T., Shata, M. T., Shire, N. J., & Sherman, K. E. (2008). Acute hepatitis C virus infection: A chronic problem. Hepatology (Baltimore, Md.), 47(1), 321–331. https://doi.org/10.1002/hep.21902
  • Brazzoli, M., Bianchi, A., Filippini, S., Weiner, A., Zhu, Q., Pizza, M., & Crotta, S. (2008). CD81 is a central regulator of cellular events required for hepatitis C virus infection of human hepatocytes. Journal of Virology, 82(17), 8316–8329. https://doi.org/10.1128/JVI.00665-08
  • Castelli, M., Clementi, N., Pfaff, J., Sautto, G. A., Diotti, R. A., Burioni, R., Doranz, B. J., Dal Peraro, M., Clementi, M., & Mancini, N. (2017). A biologically-validated HCV E1E2 heterodimer structural model. Scientific Reports, 7(1), 214. https://doi.org/10.1038/s41598-017-00320-7
  • Chen, J., Wang, W., Sun, H., Pang, L., & Bao, H. (2021). Binding mechanism of inhibitors to p38α MAP kinase deciphered by using multiple replica Gaussian accelerated molecular dynamics and calculations of binding free energies. Computers in Biology and Medicine, 134, 104485. https://doi.org/10.1016/j.compbiomed.2021.104485
  • Choo, Q.-L., Kuo, G., Weiner, A. J., Overby, L. R., Bradley, D. W., & Houghton, M. (1989). Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science (New York, N.Y.), 244(4902), 359–362. https://doi.org/10.1126/science.2523562
  • Cormier, E. G., Tsamis, F., Kajumo, F., Durso, R. J., Gardner, J. P., & Dragic, T. (2004). CD81 is an entry coreceptor for hepatitis C virus. Proceedings of the National Academy of Sciences of the United States of America, 101(19), 7270–7274. https://doi.org/10.1073/pnas.0402253101
  • D. A., Case, I. Y. B.-S S. R., Brozell, D. S., Cerutti, T. E., Cheatham, III, V. W. D., Cruzeiro, T. A., Darden, R. E., Duke, D. G. M. K., Gilson, H., Gohlke, A. W., Goetz, D., Greene, R., Harris, N., Homeyer, Y., Huang, S., Izadi, A. K. T., Kurtzman, T. S., Lee, S., LeGrand, P., Li, C., Lin, J., Liu, T., Luchko, R., Luo, D. J., Mermelstein, K. M. M., Y., Miao, G., Monard, C., Nguyen, H., Nguyen, I., Omelyan, A., Onufriev, F., Pan, R., Qi, D. R. R., A., Roitberg, C., Sagui, S., Schott-Verdugo, J., Shen, C. L., Simmerling, J., Smith, R., SalomonFerrer, J., Swails, R. C., Walker, J., Wang, H., Wei, R. M., Wolf, X., Wu, … L., Xiao, D. M., York, P. A., Kollman. (2018). AMBER, 2018.
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Dauchez, M., Mazurier, J., Montreuil, J., Spik, G., & Vergoten, G. (1992). Molecular dynamics simulations of a monofucosylated biantennary glycan of the N-acetyllactosamine type: The human lactotransferrin glycan. Biochimie, 74(1), 63–74. https://doi.org/10.1016/0300-9084(92)90185-h
  • Dobrica, M.-O., van Eerde, A., Tucureanu, C., Onu, A., Paruch, L., Caras, I., Vlase, E., Steen, H., Haugslien, S., Alonzi, D., Zitzmann, N., Bock, R., Dubuisson, J., Popescu, C.-I., Stavaru, C., Liu Clarke, J., & Branza-Nichita, N. (2021). Hepatitis C virus E2 envelope glycoprotein produced in Nicotiana benthamiana triggers humoral response with virus‐neutralizing activity in vaccinated mice. Plant Biotechnology Journal, 19(10), 2027–2039. https://doi.org/10.1111/pbi.13631
  • Dong, C., Lee, J., Kim, S., Lai, W., Webb, E. B., Oztekin, A., Zhang, X. F., & Im, W. (2018). Long-ranged protein-glycan interactions stabilize Von Willebrand factor A2 domain from mechanical unfolding. Scientific Reports, 8(1), 16017. https://doi.org/10.1038/s41598-018-34374-y
  • Douam, F., Dao Thi, V. L., Maurin, G., Fresquet, J., Mompelat, D., Zeisel, M. B., Baumert, T. F., Cosset, F. L., & Lavillette, D. (2014). Critical interaction between E1 and E2 glycoproteins determines binding and fusion properties of hepatitis C virus during cell entry. Hepatology (Baltimore, Md.), 59(3), 776–788. https://doi.org/10.1002/hep.26733
  • Echeverría, N., Moratorio, G., Cristina, J., & Moreno, P. (2015). Hepatitis C virus genetic variability and evolution. World Journal of Hepatology, 7(6), 831–845. https://doi.org/10.4254/wjh.v7.i6.831
  • El-Bastawissy, E., & Elhasab, M. (2015). Molecular docking and molecular dynamic simulation: Insight into the difference in binding of HCV NS3/4A macrocclic inhibitors to genotypes 1b and 4a. Drug Designing: Open Access, 04(02), 2169. https://doi.org/10.4172/2169-0138.1000124
  • Farquhar, M., & McKeating, J. A. (2008). Primary hepatocytes as targets for hepatitis C virus replication. Journal of Viral Hepatitis, 15(12), 849–854. https://doi.org/10.1111/j.1365-2893.2008.01051.x
  • Fiser, A., Do, R. K., & Sali, A. (2000). Modeling of loops in protein structures. Protein Science: A Publication of the Protein Society, 9(9), 1753–1773. https://doi.org/10.1110/ps.9.9.1753
  • Flyak, A. I., Ruiz, S., Colbert, M. D., Luong, T., Crowe, J. E., Jr, Bailey, J. R., & Bjorkman, P. J. (2018). HCV broadly neutralizing antibodies use a CDRH3 disulfide motif to recognize an E2 glycoprotein site that can be targeted for vaccine design. Cell Host & Microbe, 24(5), 703–716. e703. https://doi.org/10.1016/j.chom.2018.10.009
  • Flyak, A. I., Ruiz, S. E., Salas, J., Rho, S., Bailey, J. R., & Bjorkman, P. J. (2020). An ultralong CDRH2 in HCV neutralizing antibody demonstrates structural plasticity of antibodies against E2 glycoprotein. eLife, 9, e53169. https://doi.org/10.7554/eLife.53169
  • Frauenfelder, H., Sligar, S. G., & Wolynes, P. G. (1991). The energy landscapes and motions of proteins. Science (New York, N.Y.), 254(5038), 1598–1603. https://doi.org/10.1126/science.1749933
  • Goffard, A., Callens, N., Bartosch, B., Wychowski, C., Cosset, F.-L., Montpellier, C., & Dubuisson, J. (2005). Role of N-linked glycans in the functions of hepatitis C virus envelope glycoproteins. Journal of Virology, 79(13), 8400–8409. https://doi.org/10.1128/JVI.79.13.8400-8409.2005
  • Gopal, R., Jackson, K., Tzarum, N., Kong, L., Ettenger, A., Guest, J., Pfaff, J. M., Barnes, T., Honda, A., Giang, E., Davidson, E., Wilson, I. A., Doranz, B. J., & Law, M. (2017). Probing the antigenicity of hepatitis C virus envelope glycoprotein complex by high-throughput mutagenesis. PLoS Pathogens, 13(12), e1006735. https://doi.org/10.1371/journal.ppat.1006735
  • Guest, J. D., & Pierce, B. G. (2018). Computational modeling of hepatitis C virus envelope glycoprotein structure and recognition. Frontiers in Immunology, 9, 1117. https://doi.org/10.3389/fimmu.2018.01117
  • Hao, D., Yang, Z., Gao, T., Tian, Z., Zhang, L., & Zhang, S. (2018). Role of glycans in cholesteryl ester transfer protein revealed by molecular dynamics simulation. Proteins, 86(8), 882–891. https://doi.org/10.1002/prot.25520
  • He, L., Cheng, Y., Kong, L., Azadnia, P., Giang, E., Kim, J., Wood, M. R., Wilson, I. A., Law, M., & Zhu, J. (2015). Approaching rational epitope vaccine design for hepatitis C virus with meta-server and multivalent scaffolding. Scientific Reports, 5(1), 12501. https://doi.org/10.1038/srep12501
  • Hebert, D. N., Zhang, J.-X., Chen, W., Foellmer, B., & Helenius, A. (1997). The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. The Journal of Cell Biology, 139(3), 613–623. https://doi.org/10.1083/jcb.139.3.613
  • Helle, F., Duverlie, G., & Dubuisson, J. (2011). The hepatitis C virus glycan shield and evasion of the humoral immune response. Viruses, 3(10), 1909–1932. https://doi.org/10.3390/v3101909
  • Helle, F., Vieyres, G., Elkrief, L., Popescu, C.-I., Wychowski, C., Descamps, V., Castelain, S., Roingeard, P., Duverlie, G., & Dubuisson, J. (2010). Role of N-linked glycans in the functions of hepatitis C virus envelope proteins incorporated into infectious virions. Journal of Virology, 84(22), 11905–11915. https://doi.org/10.1128/JVI.01548-10
  • Ichiye, T., & Karplus, M. (1991). Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins, 11(3), 205–217. https://doi.org/10.1002/prot.340110305
  • Jeffrey, G. A., & Jeffrey, G. A. (1997). An introduction to hydrogen bonding (Vol. 12). Oxford University Press.
  • Jo, S., Qi, Y., & Im, W. (2016). Preferred conformations of N-glycan core pentasaccharide in solution and in glycoproteins. Glycobiology, 26(1), 19–29. https://doi.org/10.1093/glycob/cwv083
  • Keck, Z-y., Xia, J., Wang, Y., Wang, W., Krey, T., Prentoe, J., Carlsen, T., Li, A. Y.-J., Patel, A. H., Lemon, S. M., Bukh, J., Rey, F. A., & Foung, S. K. H. (2012). Human monoclonal antibodies to a novel cluster of conformational epitopes on HCV E2 with resistance to neutralization escape in a genotype 2a isolate. PLoS Pathogens, 8(4), e1002653. https://doi.org/10.1371/journal.ppat.1002653
  • Kirschner, K. N., Yongye, A. B., Tschampel, S. M., González‐Outeiriño, J., Daniels, C. R., Foley, B. L., & Woods, R. J. (2008). GLYCAM06: A generalizable biomolecular force field. Carbohydrates. Journal of Computational Chemistry, 29(4), 622–655. https://doi.org/10.1002/jcc.20820
  • Kräutler, V., van Gunsteren, W. F., & Hünenberger, P. H. (2001). A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. Journal of Computational Chemistry, 22(5), 501–508. https://doi.org/10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V
  • Kumar, A., Rohe, T. C., Elrod, E. J., Khan, A. G., Dearborn, A. D., Kissinger, R., Grakoui, A., & Marcotrigiano, J. (2023). Regions of hepatitis C virus E2 required for membrane association. Nature Communications, 14(1), 433. https://doi.org/10.1038/s41467-023-36183-y
  • Lavie, M., Goffard, A., & Dubuisson, J. (2006). HCV glycoproteins: Assembly of a functional E1–E2 Heterodimer (Hepatitis C viruses: Genomes and molecular biology. Horizon Bioscience.
  • Lavie, M., Hanoulle, X., & Dubuisson, J. (2018). Glycan shielding and modulation of hepatitis C virus neutralizing antibodies. Frontiers in Immunology, 9, 910. https://doi.org/10.3389/fimmu.2018.00910
  • Lee, H. S., Qi, Y., & Im, W. (2015). Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study. Scientific Reports, 5(1), 8926. https://doi.org/10.1038/srep08926
  • Liang, T. J., Feld, J. J., Cox, A. L., & Rice, C. M. (2021). Controlled human infection model-fast track to HCV vaccine? The New England Journal of Medicine, 385(13), 1235–1240. https://doi.org/10.1056/NEJMsb2109093
  • Lindenbach, B. D., & Rice, C. M. (2005). Unravelling hepatitis C virus replication from genome to function. Nature, 436(7053), 933–938. https://doi.org/10.1038/nature04077
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Marín, M. Q., Sliepen, K., García-Arriaza, J., Koekkoek, S. M., Pérez, P., Sorzano, C. Ó. S., Gómez, C. E., Sanders, R. W., & Esteban, M. (2020). Optimized hepatitis C virus (HCV) E2 glycoproteins and their immunogenicity in combination with MVA-HCV. Vaccines, 8(3), 440. https://doi.org/10.3390/vaccines8030440
  • Mellquist, J., Kasturi, L., Spitalnik, S., & Shakin-Eshleman, S. (1998). The amino acid following an asn-X-Ser/Thr sequon is an important determinant of N-linked core glycosylation efficiency. Biochemistry, 37(19), 6833–6837. https://doi.org/10.1021/bi972217k
  • Metcalf, M. C., Janus, B. M., Yin, R., Wang, R., Guest, J. D., Pozharski, E., Law, M., Mariuzza, R. A., Toth, E. A., Pierce, B. G., Fuerst, T. R., & Ofek, G. (2023). Structure of engineered hepatitis C virus E1E2 ectodomain in complex with neutralizing antibodies. Nature Communications, 14(1), 3980. https://doi.org/10.1038/s41467-023-39659-z
  • Mitra, N., Sharon, N., & Surolia, A. (2003). Role of N-linked glycan in the unfolding pathway of Erythrina corallodendron lectin. Biochemistry, 42(42), 12208–12216. https://doi.org/10.1021/bi035169e
  • Nagae, M., & Yamaguchi, Y. (2012). Function and 3D structure of the N-glycans on glycoproteins. International Journal of Molecular Sciences, 13(7), 8398–8429. https://doi.org/10.3390/ijms13078398
  • Nagalakshmamma, V., Venkataswamy, M., Pasala, C., Umamaheswari, A., Thyagaraju, K., Nagaraju, C., & Chalapathi, P. V. (2020). Design, synthesis, anti-tobacco mosaic viral and molecule docking simulations of urea/thiourea derivatives of 2-(piperazine-1-yl)-pyrimidine and 1-(4-Fluoro/4-Chloro phenyl)-piperazine and 1-(4-Chloro phenyl)-piperazine–A study. Bioorganic Chemistry, 102, 104084. https://doi.org/10.1016/j.bioorg.2020.104084
  • Ohuchi, M., Ohuchi, R., Feldmann, A., & Klenk, H.-D. (1997). Regulation of receptor binding affinity of influenza virus hemagglutinin by its carbohydrate moiety. Journal of Virology, 71(11), 8377–8384. https://doi.org/10.1128/JVI.71.11.8377-8384.1997
  • Organization, W. H. (2017). Global hepatitis report 2017. World Health Organization.
  • Pasala, C., Katari, S. K., Nalamolu, R. M., Bitla, A. R., & Amineni, U. (2019). Hierarchical-clustering, scaffold-mining exercises and dynamics simulations for effectual inhibitors against lipid-A biosynthesis of Helicobacter pylori. Cellular and Molecular Bioengineering, 12(3), 255–274. https://doi.org/10.1007/s12195-019-00572-5
  • Pastor, R. W., Brooks, B. R., & Szabo, A. (1988). An analysis of the accuracy of Langevin and molecular dynamics algorithms. Molecular Physics, 65(6), 1409–1419. https://doi.org/10.1080/00268978800101881
  • Pérez, S., & de Sanctis, D. (2017). Glycoscience@ Synchrotron: Synchrotron radiation applied to structural glycoscience. Beilstein Journal of Organic Chemistry, 13(1), 1145–1167. https://doi.org/10.3762/bjoc.13.114
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pileri, P., Uematsu, Y., Campagnoli, S., Galli, G., Falugi, F., Petracca, R., Weiner, A. J., Houghton, M., Rosa, D., Grandi, G., & Abrignani, S. (1998). Binding of hepatitis C virus to CD81. Science (New York, N.Y.), 282(5390), 938–941. https://doi.org/10.1126/science.282.5390.938
  • Price, D. J., & Brooks, C. L. III, (2004). A modified TIP3P water potential for simulation with Ewald summation. The Journal of Chemical Physics, 121(20), 10096–10103. https://doi.org/10.1063/1.1808117
  • Qi, Y., Jo, S., & Im, W. (2016). Roles of glycans in interactions between gp120 and HIV broadly neutralizing antibodies. Glycobiology, 26(3), 251–260.
  • Roe, D. R., & Cheatham, T. E. III, (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Roy, R., Ghosh, B., & Kar, P. (2020). Investigating conformational dynamics of Lewis Y Oligosaccharides and elucidating blood group dependency of cholera using molecular dynamics. ACS Omega, 5(8), 3932–3942. https://doi.org/10.1021/acsomega.9b03398
  • Saeed, U., Waheed, Y., & Ashraf, M. (2014). Hepatitis B and hepatitis C viruses: A review of viral genomes, viral induced host immune responses, genotypic distributions and worldwide epidemiology. Asian Pacific Journal of Tropical Disease, 4(2), 88–96. https://doi.org/10.1016/S2222-1808(14)60322-4
  • Salas, J. H., Urbanowicz, R. A., Guest, J. D., Frumento, N., Figueroa, A., Clark, K. E., Keck, Z., Cowton, V. M., Cole, S. J., Patel, A. H., Fuerst, T. R., Drummer, H. E., Major, M., Tarr, A. W., Ball, J. K., Law, M., Pierce, B. G., Foung, S. K. H., & Bailey, J. R. (2022). An antigenically diverse, representative panel of envelope glycoproteins for hepatitis C virus vaccine development. Gastroenterology, 162(2), 562–574. https://doi.org/10.1053/j.gastro.2021.10.005
  • Sandomenico, A., Leonardi, A., Berisio, R., Sanguigno, L., Focà, G., Focà, A., Ruggiero, A., Doti, N., Muscariello, L., Barone, D., Farina, C., Owsianka, A., Vitagliano, L., Patel, A. H., & Ruvo, M. (2016). Generation and characterization of monoclonal antibodies against a cyclic variant of hepatitis C virus E2 epitope 412–422. Journal of Virology, 90(7), 3745–3759. https://doi.org/10.1128/JVI.02397-15
  • Ströh, L. J., & Krey, T. (2020). HCV glycoprotein structure and implications for B-cell vaccine development. International Journal of Molecular Sciences, 21(18), 6781. https://doi.org/10.3390/ijms21186781
  • Tong, Y., Lavillette, D., Li, Q., & Zhong, J. (2018). Role of hepatitis C virus envelope glycoprotein E1 in virus entry and assembly. Frontiers in Immunology, 9, 1411. https://doi.org/10.3389/fimmu.2018.01411
  • Toth, E. A., Andrianov, A. K., & Fuerst, T. R. (2023). Prospects for developing an Hepatitis C virus E1E2‐based nanoparticle vaccine. Reviews in Medical Virology, 33(5), e2474. https://doi.org/10.1002/rmv.2474
  • Tzarum, N., Giang, E., Kadam, R. U., Chen, F., Nagy, K., Augestad, E. H., Velázquez-Moctezuma, R., Keck, Z.-Y., Hua, Y., Stanfield, R. L., Dreux, M., Prentoe, J., Foung, S. K. H., Bukh, J., Wilson, I. A., & Law, M. (2020). An alternate conformation of HCV E2 neutralizing face as an additional vaccine target. Science Advances, 6(30), eabb5642. https://doi.org/10.1126/sciadv.abb5642
  • Urbanowicz, R. A., Wang, R., Schiel, J. E., Keck, Z.-Y., Kerzic, M. C., Lau, P., Rangarajan, S., Garagusi, K. J., Tan, L., Guest, J. D., Ball, J. K., Pierce, B. G., Mariuzza, R. A., Foung, S. K. H., & Fuerst, T. R. (2019). Antigenicity and immunogenicity of differentially glycosylated hepatitis C virus E2 envelope proteins expressed in mammalian and insect cells. Journal of Virology, 93(7), e01403-18. https://doi.org/10.1128/JVI.01403-18
  • Von Messling, V., & Cattaneo, R. (2003). N-linked glycans with similar location in the fusion protein head modulate paramyxovirus fusion. Journal of Virology, 77(19), 10202–10212. https://doi.org/10.1128/jvi.77.19.10202-10212.2003
  • Wang, S.-H., Wu, T.-J., Lee, C.-W., & Yu, J. (2020). Dissecting the conformation of glycans and their interactions with proteins. Journal of Biomedical Science, 27(1), 93. https://doi.org/10.1186/s12929-020-00684-5
  • Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics, 54(1), 5.6. 1–5.6. 37. https://doi.org/10.1002/cpbi.3
  • Wormald, M. R., Petrescu, A. J., Pao, Y.-L., Glithero, A., Elliott, T., & Dwek, R. A. (2002). Conformational studies of oligosaccharides and glycopeptides: Complementarity of NMR, X-ray crystallography, and molecular modelling. Chemical Reviews, 102(2), 371–386. https://doi.org/10.1021/cr990368i
  • Zaltron, S., Spinetti, A., Biasi, L., Baiguera, C., & Castelli, F. (2012). Chronic HCV infection: Epidemiological and clinical relevance. BMC Infectious Diseases, 12 Suppl 2(Suppl 2), S2. https://doi.org/10.1186/1471-2334-12-S2-S2
  • Zeisel, M. B., Fofana, I., Fafi-Kremer, S., & Baumert, T. F. (2011). Hepatitis C virus entry into hepatocytes: Molecular mechanisms and targets for antiviral therapies. Journal of Hepatology, 54(3), 566–576. https://doi.org/10.1016/j.jhep.2010.10.014
  • Zhang, H., Bull, R. A., Quadeer, A. A., & McKay, M. R. (2023). HCV E1 influences the fitness landscape of E2 and may enhance escape from E2-specific antibodies. Virus Evolution, 9(2), vead068. https://doi.org/10.1093/ve/vead068
  • Zhang, J., Randall, G., Higginbottom, A., Monk, P., Rice, C. M., & McKeating, J. A. (2004). CD81 is required for hepatitis C virus glycoprotein-mediated viral infection. Journal of Virology, 78(3), 1448–1455. https://doi.org/10.1128/jvi.78.3.1448-1455.2004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.