55
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cracking a cancer code DNA methylation in epigenetic modification: an in-silico approach on efficacy assessment of Sri Lanka-oriented nutraceuticals

ORCID Icon, ORCID Icon, & ORCID Icon
Received 02 Aug 2023, Accepted 14 Feb 2024, Published online: 29 Feb 2024

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2(2), 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Alamri, M. A. (2020). Pharmacoinformatics and molecular dynamic simulation studies to identify potential small-molecule inhibitors of WNK-SPAK/OSR1 signaling that mimic the RFQV motifs of WNK kinases. Arabian Journal of Chemistry, 13(4), 5107–5117. https://doi.org/10.1016/j.arabjc.2020.02.010
  • Aldawsari, F. S., Aguayo-Ortiz, R., Kapilashrami, K., Yoo, J., Luo, M., Medina-Franco, J. L., & Velázquez-Martínez, C. A. (2016). Resveratrol-salicylate derivatives as selective DNMT3 inhibitors and anticancer agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(5), 695–703. https://doi.org/10.3109/14756366.2015.1058256
  • Ashraf, M. A. (2020). Phytochemicals as potential anticancer drugs: Time to ponder nature’s bounty. BioMed Research International, 2020, 8602879. https://doi.org/10.1155/2020/8602879
  • Berdasco, M., & Esteller, M. (2019). Clinical epigenetics: Seizing opportunities for translation. Nature Reviews. Genetics, 20(2), 109–127. https://doi.org/10.1038/s41576-018-0074-2
  • Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Boulaamane, Y., Ahmad, I., Patel, H., Das, N., Britel, M. R., & Maurady, A. (2023). Structural exploration of selected C6 and C7-substituted coumarin isomers as selective MAO-B inhibitors. Journal of Biomolecular Structure & Dynamics, 41(6), 2326–2340. https://doi.org/10.1080/07391102.2022.2033643
  • Chagas, C. M., Moss, S., & Alisaraie, L. (2018). Drug metabolites and their effects on the development of adverse reactions: Revisiting Lipinski’s Rule of Five. International Journal of Pharmaceutics, 549(1–2), 133–149. https://doi.org/10.1016/j.ijpharm.2018.07.046
  • Chahal, V., & Kakkar, R. (2023). A combination strategy of structure-based virtual screening, MM-GBSA, cross docking, molecular dynamics and metadynamics simulations used to investigate natural compounds as potent and specific inhibitors of tumor linked human carbonic anhydrase IX. Journal of Biomolecular Structure & Dynamics, 41(12), 5465–5480. https://doi.org/10.1080/07391102.2022.2087736
  • Cheng, Z., Li, M., Dey, R., & Chen, Y. (2021). Nanomaterials for cancer therapy: Current progress and perspectives. Journal of Hematology & Oncology, 14(1), 85. https://doi.org/10.1186/s13045-021-01096-0
  • Creanza, T. M., Delre, P., Ancona, N., Lentini, G., Saviano, M., & Mangiatordi, G. F. (2021). Structure-based prediction of hERG-related cardiotoxicity: A benchmark study. Journal of Chemical Information and Modeling, 61(9), 4758–4770. https://doi.org/10.1021/acs.jcim.1c00744
  • Das, J. K., Xiong, X., Ren, X., Yang, J. M., & Song, J. (2019). Heat shock proteins in cancer immunotherapy. Journal of Oncology, 2019, 3267207–3267209. https://doi.org/10.1155/2019/3267207
  • De Zoysa, M. H. N., Rathnayake, H., Hewawasam, R. P., & Wijayaratne, W. M. D. G. B. (2019). Determination of in vitro antimicrobial activity of five Sri Lankan medicinal plants against selected human pathogenic bacteria. International Journal of Microbiology, 2019, 7431439. https://doi.org/10.1155/2019/7431439
  • Dushanan, R., Weerasinghe, S., Dissanayake, D., & Senthilnithy, R. (2021). An in-silico approach to evaluate the inhibitory potency of selected hydroxamic acid derivatives on zinc-dependent histone deacetylase enzyme. Journal of Computational Biophysics and Chemistry, 20(06), 603–618. https://doi.org/10.1142/S2737416521500356
  • Dushanan, R., Weerasinghe, S., Dissanayake, D. P., & Senthilinithy, R. (2022a). Cracking a cancer code histone deacetylation in epigenetic: The implication from molecular dynamics simulations on efficacy assessment of histone deacetylase inhibitors. Journal of Biomolecular Structure & Dynamics, 40(5), 2352–2368. https://doi.org/10.1080/07391102.2020.1838328
  • Dushanan, R., Weerasinghe, S., Dissanayake, D. P., & Senthilnithy, R. (2022b). Driving the new generation histone deacetylase inhibitors in cancer therapy; manipulation of the histone abbreviation at the epigenetic level: An in-silico approach. Canadian Journal of Chemistry, 100(12), 880–890. https://doi.org/10.1139/cjc-2022-0056
  • Dushanan, R., Weerasinghe, S., Dissanayake, D. P., & Senthilinithy, R. (2022c). Implication of ab initio, QM/MM, and molecular dynamics calculations on the prediction of the therapeutic potential of some selected HDAC inhibitors. Molecular Simulation, 48(16), 1464–1475. https://doi.org/10.1080/08927022.2022.2097672
  • Elhamamsy, A. R. (2016). DNA methylation dynamics in plants and mammals: Overview of regulation and dysregulation. Cell Biochemistry and Function, 34(5), 289–298. https://doi.org/10.1002/cbf.3183
  • Emilie, A., Aura-Bianca, B., Marta, G., Charlotte, K., Dmitry Aleksandrovich, Z., Louise, N., Jenna, M., & Md Zahidul Islam, P. (2020). Advances in anticancer immunotherapy: Car-T cell, checkpoint inhibitors, dendritic cell vaccines, and oncolytic viruses, and emerging cellular and molecular targets. Cancers, 12(7), 1826. https://doi.org/10.3390/cancers12071826
  • Erdmann, A., Halby, L., Fahy, J., & Arimondo, P. B. (2015). Targeting DNA methylation with small molecules: What’s next? Journal of Medicinal Chemistry, 58(6), 2569–2583. https://doi.org/10.1021/jm500843d
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Ewertz, M., & Jensen, A. B. (2011). Late effects of breast cancer treatment and potentials for rehabilitation. Acta Oncologica (Stockholm, Sweden), 50(2), 187–193. https://doi.org/10.3109/0284186X.2010.533190
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Fox, D. J. (2009). Gaussian 09, Revision A.02 (No. 09). Gaussian, Inc.
  • Gamage, D. G. N. D., Dharmadasa, R. M., Abeysinghe, D. C., Wijesekara, R. G. S., Prathapasinghe, G. A., & Someya, T. (2021). Ethnopharmacological survey on medicinal plants used for cosmetic treatments in traditional and ayurveda systems of medicine in Sri Lanka. Evidence-Based Complementary and Alternative Medicine: ECAM, 2021, 5599654. https://doi.org/10.1155/2021/5599654
  • Ganesan, A., Arimondo, P. B., Rots, M. G., Jeronimo, C., & Berdasco, M. (2019). The timeline of epigenetic drug discovery: From reality to dreams. Clinical Epigenetics, 11(1), 174. https://doi.org/10.1186/s13148-019-0776-0
  • Grigera, J., Berendsen, H. J. C., & Straatsma, T. P. (1987). The missing term in effective pair potentials. The Journal of Physical Chemistry, 91(24), 6269–6271. https://doi.org/10.1021/j100308a038
  • Hashimoto, H., & Cheng, X. (2011). Structure of human DNMT1 (residues 600-1600) in complex with Sinefungin. https://doi.org/10.2210/pdb3swr/pdb
  • Hassen, D. M., Bassiouny, K., Shenawy, F. E., & Khalil, H. (2017). Epigenetics reprogramming of autophagy is involved in childhood acute lymphatic leukemi. Pediatric Infectious Diseases: Open Access, 02(02), 45. https://doi.org/10.21767/2573-0282.10045
  • Hess, B. (2008). P-LINCS: A parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation, 4(1), 116–122. https://doi.org/10.1021/ct700200b
  • Ho, B. N., Pfeffer, C. M., & Singh, A. T. K. (2017). Update on nanotechnology-based drug delivery systems in cancer treatment. Anticancer Research, 37(11), 5975–5981. https://doi.org/10.21873/anticanres.12044
  • Hossain, A., Rahman, M. E., Rahman, M. S., Nasirujjaman, K., Matin, M. N., Faruqe, M. O., & Rabbee, M. F. (2023). Identification of medicinal plant-based phytochemicals as a potential inhibitor for SARS-CoV-2 main protease (Mpro) using molecular docking and deep learning methods. Computers in Biology and Medicine, 157, 106785. https://doi.org/10.1016/j.compbiomed.2023.106785
  • Hosseinzadeh, S., Jafarikukhdan, A., Hosseini, A., & Armand, R. (2015). The application of medicinal plants in traditional and modern medicine: A review of Thymus vulgaris. International Journal of Clinical Medicine, 06(09), 635–642. https://doi.org/10.4236/ijcm.2015.69084
  • Irfan, M., Chavez, B., Rizzo, P., D'Auria, J. C., & Moghe, G. D. (2021). Evolution-aided engineering of plant specialized metabolism. aBIOTECH, 2(3), 240–263. https://doi.org/10.1007/s42994-021-00052-3
  • Jimbu, L., Mesaros, O., Popescu, C., Neaga, A., Berceanu, I., Dima, D., Gaman, M., & Zdrenghea, M. (2021). Is there a place for PD-1-PD-L blockade in acute myeloid leukemia? Pharmaceuticals (Basel, Switzerland), 14(4), 288. https://doi.org/10.3390/ph14040288
  • Jones, P. A., Issa, J. P. J., & Baylin, S. (2016). Targeting the cancer epigenome for therapy. Nature Reviews. Genetics, 17(10), 630–641. https://doi.org/10.1038/nrg.2016.93
  • Juárez-Mercado, K. E., Prieto-Martínez, F. D., Sánchez-Cruz, N., Peña-Castillo, A., Prada-Gracia, D., & Medina-Franco, J. L. (2020). DNA methyltransferase inhibitors with novel chemical scaffolds. BioRxiv, https://doi.org/10.1101/2020.10.13.337709
  • Khan, M. A., Hussain, A., Sundaram, M. K., Alalami, U., Gunasekera, D., Ramesh, L., Hamza, A., & Quraishi, U. (2015). (-)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells. Oncology Reports, 33(4), 1976–1984. https://doi.org/10.3892/or.2015.3802
  • Krishna, S., Shukla, S., Lakra, A. D., Meeran, S. M., & Siddiqi, M. I. (2017). Identification of potent inhibitors of DNA methyltransferase 1 (DNMT1) through a pharmacophore-based virtual screening approach. Journal of Molecular Graphics & Modelling, 75, 174–188. https://doi.org/10.1016/j.jmgm.2017.05.014
  • Kumar, A., Rathi, E., & Kini, S. G. (2019). E-pharmacophore modelling, virtual screening, molecular dynamics simulations and in-silico ADME analysis for identification of potential E6 inhibitors against cervical cancer. Journal of Molecular Structure, 1189, 299–306. https://doi.org/10.1016/j.molstruc.2019.04.023
  • Kumar, S. G., Singh, H., & Sobhia, M. E. (2021). Structure based insights into the association of fluoroquinolones with mycobacterial DNA-gyrase complexes. Journal of Bioinformatics and Systems Biology, 04(03), 103–116. https://doi.org/10.26502/jbsb.5107023
  • Kwilas, A. R., Donahue, R. N., Tsang, K. Y., & Hodge, J. W. (2015). Gene therapies for cancer: Strategies, challenges and successes. Journal of Cellular Physiology, 230(2), 259–271. https://doi.org/10.1002/jcp.24791.Gene
  • Li, X., Lovell, J. F., Yoon, J., & Chen, X. (2020). Clinical development and potential of photothermal and photodynamic therapies for cancer. Nature Reviews. Clinical Oncology, 17(11), 657–674. https://doi.org/10.1038/s41571-020-0410-2
  • Lokhande, K. B., Kale, A., Shahakar, B., Shrivastava, A., Nawani, N., Swamy, K. V., Singh, A., & Pawar, S. V. (2023). Terpenoid phytocompounds from mangrove plant Xylocarpus moluccensis as possible inhibitors against SARS-CoV-2: In silico strategy. Computational Biology and Chemistry, 106(May), 107912. https://doi.org/10.1016/j.compbiolchem.2023.107912
  • Lokhande, K. B., Shrivastava, A., & Singh, A. (2023). In silico discovery of potent inhibitors against monkeypox’s major structural proteins. Journal of Biomolecular Structure & Dynamics, 41(23), 14259–14274. https://doi.org/10.1080/07391102.2023.2183342
  • Lokhande, K. B., Tiwari, A., Gaikwad, S., Kore, S., Nawani, N., Wani, M., Swamy, K. V., & Pawar, S. V. (2023). Computational docking investigation of phytocompounds from bergamot essential oil against Serratia marcescens protease and FabI: Alternative pharmacological strategy. Computational Biology and Chemistry, 104(February), 107829. https://doi.org/10.1016/j.compbiolchem.2023.107829
  • Macip, G., Garcia-Segura, P., Mestres-Truyol, J., Saldivar-Espinoza, B., Ojeda-Montes, M. J., Gimeno, A., Cereto-Massagué, A., Garcia-Vallvé, S., & Pujadas, G. (2022). Haste makes waste: A critical review of docking-based virtual screening in drug repurposing for SARS-CoV-2 main protease (M-pro) inhibition. Medicinal Research Reviews, 42(2), 744–769. https://doi.org/10.1002/med.21862
  • Miles, J. A., & Ross, B. P. (2021). Recent advances in virtual screening for cholinesterase inhibitors. ACS Chemical Neuroscience, 12(1), 30–41. https://doi.org/10.1021/acschemneuro.0c00627
  • Mohotti, S., Rajendran, S., Muhammad, T., Strömstedt, A. A., Adhikari, A., Burman, R., de Silva, E. D., Göransson, U., Hettiarachchi, C. M., & Gunasekera, S. (2020). Screening for bioactive secondary metabolites in Sri Lankan medicinal plants by microfractionation and targeted isolation of antimicrobial flavonoids from Derris scandens. Journal of Ethnopharmacology, 246, 112158. https://doi.org/10.1016/j.jep.2019.112158
  • Mokwena, M. G., Kruger, C. A., Ivan, M. T., & Heidi, A. (2018). A review of nanoparticle photosensitizer drug delivery uptake systems for photodynamic treatment of lung cancer. Photodiagnosis and Photodynamic Therapy, 22(March), 147–154. https://doi.org/10.1016/j.pdpdt.2018.03.006
  • More-Adate, P., Lokhande, K. B., Swamy, K. V., Nagar, S., & Baheti, A. (2022). GC-MS profiling of Bauhinia variegata major phytoconstituents with computational identification of potential lead inhibitors of SARS-CoV-2 Mpro. Computers in Biology and Medicine, 147(March), 105679. https://doi.org/10.1016/j.compbiomed.2022.105679
  • Mulder, W. J. M., Ochando, J., Joosten, L. A. B., Fayad, Z. A., & Netea, M. G. (2019). Therapeutic targeting of trained immunity. Nature Reviews. Drug Discovery, 18(7), 553–566. https://doi.org/10.1038/s41573-019-0025-4
  • Nassar, S. F., Raddassi, K., Ubhi, B., Doktorski, J., & Abulaban, A. (2020). Precision medicine: Steps along the road to combat human cancer. Cells, 9(9), 2056. https://doi.org/10.3390/cells9092056
  • Ongaro, A., Oselladore, E., Memo, M., Ribaudo, G., & Gianoncelli, A. (2021). Insight into the LFA-1/SARS-CoV-2 Orf7a complex by protein-protein docking, molecular dynamics, and MM-GBSA calculations. Journal of Chemical Information and Modeling, 61(6), 2780–2787. https://doi.org/10.1021/acs.jcim.1c00198
  • Paligaspe, P., Weerasinghe, S., Dissanayake, D. P., & Senthilnithy, R. (2021). Identify the effect of As(III) on the structural stability of monomeric PKM2 and its carcinogenicity: A molecular dynamics and QM/MM based approach. Journal of Molecular Structure, 1235, 130257. https://doi.org/10.1016/j.molstruc.2021.130257
  • Pandey, K., Lokhande, K. B., Swamy, K. V., Nagar, S., & Dake, M. (2021). In silico exploration of phytoconstituents from Phyllanthus emblica and Aegle marmelos as potential therapeutics against SARS-CoV-2 RdRp. Bioinformatics and Biology Insights, 15, 11779322211027403. https://doi.org/10.1177/11779322211027403
  • Parthiban, G., Dushanan, R., Weerasinghe, S., Dissanayake, D., & Senthilnithy, R. (2022). Exploration of novel mono hydroxamic acid derivatives as inhibitors for histone deacetylase like protein (HDLP) by molecular dynamics studies. Indonesian Journal of Chemistry, 22(6), 1534–1552. https://doi.org/10.22146/ijc.74167
  • Patridge, E., Gareiss, P., Kinch, M. S., & Hoyer, D. (2016). An analysis of FDA-approved drugs: Natural products and their derivatives. Drug Discovery Today, 21(2), 204–207. https://doi.org/10.1016/j.drudis.2015.01.009
  • Perera, H. D. S. M., Samarasekera, J. K. R. R., Handunnetti, S. M., Weerasena, O. V. D. S. J., Weeratunga, H. D., Jabeen, A., & Choudhary, M. I. (2018). In vitro pro-inflammatory enzyme inhibition and anti-oxidant potential of selected Sri Lankan medicinal plants. BMC Complementary and Alternative Medicine, 18(1), 271. https://doi.org/10.1186/s12906-018-2335-1
  • Priyani, P., Samantha, W., Dhammike, D., & Senthilnithy, R. (2022). Impact of Cd (II) on the stability of human uracil DNA glycosylase enzyme; an implication of molecular dynamics trajectories on stability analysis. Journal of Biomolecular Structure & Dynamics, 40(24), 14027–14034. https://doi.org/10.1080/07391102.2021.1999329
  • Priyani, P., Samantha, W., Dhammike, D., Senthilnithy, R., Abeysinghe, T., and Jayasinghe, C. (2024). Computational investigation of impact of Pb(II) and Ni(II) ions on hUNG enzyme: insights from molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2024.2307442
  • Rathnayake, S., & Weerasinghe, S. (2018). Exploring the binding properties of agonists interacting with glucocorticoid receptor: An in silico approach. Journal of Molecular Modeling, 24(12), 342. https://doi.org/10.1007/s00894-018-3879-1
  • Ravichandran, M., Jurkowska, R. Z., & Jurkowski, T. P. (2018). Target specificity of mammalian DNA methylation and demethylation machinery. Organic & Biomolecular Chemistry, 16(9), 1419–1435. https://doi.org/10.1039/c7ob02574b
  • Sabe, V. T., Ntombela, T., Jhamba, L. A., Maguire, G. E. M., Govender, T., Naicker, T., & Kruger, H. G. (2021). Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. European Journal of Medicinal Chemistry, 224, 113705. https://doi.org/10.1016/j.ejmech.2021.113705
  • Shah, S. C., Kayamba, V., Peek, R. M., & Heimburger, D. (2019). Cancer control in low- and middle-income countries: Is it time to consider screening? Journal of Global Oncology, 2019(5), 1–8. https://doi.org/10.1200/JGO.18.00200
  • Shridhar Deshpande, N., Mahendra, G. S., Aggarwal, N. N., Gatphoh, B. F. D., & Revanasiddappa, B. C. (2021). Insilico design, ADMET screening, MM-GBSA binding free energy of novel 1,3,4 oxadiazoles linked Schiff bases as PARP-1 inhibitors targeting breast cancer. Future Journal of Pharmaceutical Sciences, 7(1), 174. https://doi.org/10.1186/s43094-021-00321-4
  • Sun, Q., Huang, S., Wang, X., Zhu, Y., Chen, Z., & Chen, D. (2015). N6-methyladenine functions as a potential epigenetic mark in eukaryotes. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 37(11), 1155–1162. https://doi.org/10.1002/bies.201500076
  • Süntar, I. (2020). Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochemistry Reviews, 19(5), 1199–1209. https://doi.org/10.1007/s11101-019-09629-9
  • Tomaselli, D., Lucidi, A., Rotili, D., & Mai, A. (2020). Epigenetic polypharmacology: A new frontier for epi-drug discovery. Medicinal Research Reviews, 40(1), 190–244. https://doi.org/10.1002/med.21600
  • Wang, S., Shi, X., Li, J., Huang, Q., Ji, Q., Yao, Y., Wang, T., Liu, L., Ye, M., Deng, Y., Ma, P., Xu, H., & Yang, G. (2022). A small molecule selected from a DNA-encoded library of natural products that binds to TNF-α and attenuates inflammation in vivo. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 9(21), e2201258. https://doi.org/10.1002/advs.202201258
  • Yanovsky, R. L., Bartenstein, D. W., Rogers, G. S., Isakoff, S. J., & Chen, S. T. (2019). Photodynamic therapy for solid tumors: A review of the literature. Photodermatology, Photoimmunology & Photomedicine, 35(5), 295–303. https://doi.org/10.1111/phpp.12489
  • Zhan, P., Itoh, Y., Suzuki, T., & Liu, X. (2015). Strategies for the discovery of target-specific or isoform-selective modulators. Journal of Medicinal Chemistry, 58(19), 7611–7633. https://doi.org/10.1021/acs.jmedchem.5b00229
  • Zhang, J., Yang, C., Wu, C., Cui, W., & Wang, L. (2020). DNA methyltransferases in cancer: Biology, paradox, aberrations, and targeted therapy. Cancers, 12(8), 2123. https://doi.org/10.3390/cancers12082123
  • Zhang, S., Meng, Y., Zhou, L., Qiu, L., Wang, H., Su, D., Zhang, B., Chan, K. M., & Han, J. (2022). Targeting epigenetic regulators for inflammation: Mechanisms and intervention therapy. MedComm, 3(4), e173. https://doi.org/10.1002/mco2.173
  • Zhang, Y., Rong, D., Li, B., & Wang, Y. (2021). Targeting epigenetic regulators with covalent small-molecule inhibitors. Journal of Medicinal Chemistry, 64(12), 7900–7925. https://doi.org/10.1021/acs.jmedchem.0c02055
  • Zhong, H. A., & Almahmoud, S. (2023). Docking and selectivity studies of covalently bound Janus Kinase 3 inhibitors. International Journal of Molecular Sciences, 24(7), 6023. https://doi.org/10.3390/ijms24076023

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.