59
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Repurposing naproxen as a potential nucleocapsid antagonist of beta-coronaviruses: targeting a conserved protein in the search for a broad-spectrum treatment option

, ORCID Icon, ORCID Icon, , , & ORCID Icon show all
Received 06 Jun 2023, Accepted 14 Feb 2024, Published online: 26 Feb 2024

References

  • Agnihotry, S., Pathak, R. k., Singh, D. B., Tiwari, A., & Hussain, I. (2022). Chapter 11 - Protein structure prediction. In D.B. Singh & R.K. Pathak (Eds.), Bioinformatics (pp. 177–188). Academic Press.
  • Asadi, M., Sayar, S., Radmanesh, E., Naghshi, S., Mousaviasl, S., Jelvay, S., Ebrahimzadeh, M., Mohammadi, A., Abbasi, S., Mobarak, S., Bitaraf, S., Zardehmehri, F., & Cheldavi, A. (2021). Efficacy of naproxen in the management of patients hospitalized with COVID-19 infection: A randomized, double-blind, placebo-controlled, clinical trial. Diabetes & Metabolic Syndrome, 15(6), 102319. https://doi.org/10.1016/j.dsx.2021.102319
  • Bai, Z., Cao, Y., Liu, W., & Li, J. (2021). The SARS-CoV-2 nucleocapsid protein and its role in viral structure, biological functions, and a potential target for drug or vaccine mitigation. Viruses, 13(6), 1115. https://doi.org/10.3390/v13061115
  • Brogden, R. N., Pinder, R. M., Sawyer, P. R., Speight, T. M., & Avery, G. S. (1975). Naproxen: A review of its pharmacological properties and therapeutic efficacy and use. Drugs, 9(5), 326–363. https://doi.org/10.2165/00003495-197509050-00002
  • Chechetkin, V. R., & Lobzin, V. V. (2022). Ribonucleocapsid assembly/packaging signals in the genomes of the coronaviruses SARS-CoV and SARS-CoV-2: Detection, comparison and implications for therapeutic targeting. Journal of Biomolecular Structure & Dynamics, 40(1), 508–522. https://doi.org/10.1080/07391102.2020.1815581
  • Choudhary, S., Malik, Y. S., & Tomar, S. (2020). Identification of SARS-CoV-2 cell entry inhibitors by drug repurposing using in silico structure-based virtual screening approach. Frontiers in Immunology, 11, 1664. https://doi.org/10.3389/fimmu.2020.01664
  • Cong, Y., Ulasli, M., Schepers, H., Mauthe, M., V'kovski, P., Kriegenburg, F., Thiel, V., de Haan, C. A. M., & Reggiori, F. (2020). Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in coronaviral life cycle. Journal of Virology, 94(4), e01925-19. https://doi.org/10.1128/JVI.01925-19
  • Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. (2020). The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology. 5(4), 536–544. https://www.nature.com/articles/s41564-020-0695-z
  • Dinesh, D. C., Chalupska, D., Silhan, J., Koutna, E., Nencka, R., Veverka, V., & Boura, E. (2020). Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. PLoS Pathogens, 16(12), e1009100. https://doi.org/10.1371/journal.ppat.1009100
  • Fehr, A. R., & Perlman, S. (2015). Coronaviruses: An overview of their replication and pathogenesis. Methods in Molecular Biology (Clifton, NJ), 1282, 1–23.
  • Filimonov, I. S., Berzova, A. P., Barkhatov, V. I., Krivoshey, A. V., Trushkin, N. A., & Vrzheshch, P. V. (2018). Negative cooperativity in the interaction of prostaglandin H synthase-1 with the competitive inhibitor naproxen can be described as the interaction of a non-competitive inhibitor with heterogeneous enzyme preparation. Biochemistry Biokhimiia, 83(2), 119–128. https://doi.org/10.1134/S0006297918020049
  • Forouzesh, N., & Mishra, N. (2021). An effective MM/GBSA protocol for absolute binding free energy calculations: A case study on SARS-CoV-2 spike protein and the human ACE2 receptor. Molecules (Basel, Switzerland), 26(8), 2383. https://doi.org/10.3390/molecules26082383
  • Ghofrani, H. A., Osterloh, I. H., & Grimminger, F. (2006). Sildenafil: From angina to erectile dysfunction to pulmonary hypertension and beyond. Nature Reviews. Drug Discovery, 5(8), 689–702. https://doi.org/10.1038/nrd2030
  • Gorkhali, R., Koirala, P., Rijal, S., Mainali, A., Baral, A., & Bhattarai, H. K. (2021). Structure and function of major SARS-CoV-2 and SARS-CoV proteins. Bioinformatics and Biology Insights, 15, 11779322211025876. https://doi.org/10.1177/11779322211025876
  • He, B., Hou, F., Ren, C., Bing, P., & Xiao, X. (2021). A review of current in silico methods for repositioning drugs and chemical compounds. Frontiers in Oncology, 11, 711225. https://doi.org/10.3389/fonc.2021.711225
  • Hill, J. A., Cohen, M. B., Kou, W. H., Mancini, G. B., Mansour, M., Fountaine, H., & Brinker, J. A. (1994). Iodixanol, a new isosmotic nonionic contrast agent compared with iohexol in cardiac angiography. The American Journal of Cardiology, 74(1), 57–63. https://doi.org/10.1016/0002-9149(94)90492-8
  • Huang, Q., Yu, L., Petros, A. M., Gunasekera, A., Liu, Z., Xu, N., Hajduk, P., Mack, J., Fesik, S. W., & Olejniczak, E. T. (2004). Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein. Biochemistry, 43(20), 6059–6063. https://doi.org/10.1021/bi036155b
  • Jiang, H., Yang, P., & Zhang, J. (2022). Potential inhibitors targeting papain-like protease of SARS-CoV-2: Two birds with one stone. Frontiers in Chemistry, 10, 822785. https://doi.org/10.3389/fchem.2022.822785
  • Kang, S., Yang, M., Hong, Z., Zhang, L., Huang, Z., Chen, X., He, S., Zhou, Z., Zhou, Z., Chen, Q., Yan, Y., Zhang, C., Shan, H., & Chen, S. (2020). Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharmaceutica Sinica B, 10(7), 1228–1238. https://doi.org/10.1016/j.apsb.2020.04.009
  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. https://doi.org/10.1093/molbev/mst010
  • Kiani, P., Scholey, A., Dahl, T. A., McMann, L., Iversen, J. M., & Verster, J. C. (2021). In Vitro assessment of the antiviral activity of ketotifen, Indomethacin and Naproxen, alone and in combination, against SARS-CoV-2. Viruses, 13(4), 558. https://doi.org/10.3390/v13040558
  • Kulsum, S., Naz, A., Rehman, A., Bari, A., Salman, M., Jabeen, S., & Akhter, S. (2022). Analytical method development and validation for simultaneous estimation of naproxen and esomeprazole in pharmaceutical dosage forms. Journal of Pharmaceutical Research International, 34(51B), 46–50. https://doi.org/10.9734/jpri/2022/v34i51B7209
  • Kumari, M., Lu, R. M., Li, M. C., Huang, J. L., Hsu, F. F., Ko, S. H., Ke, F. Y., Su, S. C., Liang, K. H., Yuan, J. P. Y., Chiang, H. L., Sun, C. P., Lee, I. J., Li, W. S., Hsieh, H. P., Tao, M. H., & Wu, H. C. (2022). A critical overview of current progress for COVID-19: Development of vaccines, antiviral drugs, and therapeutic antibodies. Journal of Biomedical Science, 29(1), 68. https://doi.org/10.1186/s12929-022-00852-9
  • Lee, T. C., Murthy, S., Del Corpo, O., Senécal, J., Butler-Laporte, G., Sohani, Z. N., Brophy, J. M., & McDonald, E. G. (2022). Remdesivir for the treatment of COVID-19: A systematic review and meta-analysis. Clinical Microbiology and Infection, 28(9), 1203–1210. https://doi.org/10.1016/j.cmi.2022.04.018
  • Lejal, N., Tarus, B., Bouguyon, E., Chenavas, S., Bertho, N., Delmas, B., Ruigrok, R. W. H., Di Primo, C., & Slama-Schwok, A. (2013). Structure-based discovery of the novel antiviral properties of naproxen against the nucleoprotein of influenza A virus. Antimicrobial Agents and Chemotherapy, 57(5), 2231–2242. https://doi.org/10.1128/AAC.02335-12
  • Longhi, S., Receveur-Bréchot, V., Karlin, D., Johansson, K., Darbon, H., Bhella, D., Yeo, R., Finet, S., & Canard, B. (2003). The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein. The Journal of Biological Chemistry, 278(20), 18638–18648. https://doi.org/10.1074/jbc.M300518200
  • Masters, P. S. (2006). The molecular biology of coronaviruses. Advances in Virus Research, 66, 193–292.
  • Masters, P. S. (2019). Coronavirus genomic RNA packaging. Virology, 537, 198–207. https://doi.org/10.1016/j.virol.2019.08.031
  • McCullough, P. A., Bertrand, M. E., Brinker, J. A., & Stacul, F. (2006). A meta-analysis of the renal safety of isosmolar iodixanol compared with low-osmolar contrast media. Journal of the American College of Cardiology, 48(4), 692–699. https://doi.org/10.1016/j.jacc.2006.02.073
  • Mizrahi, B., Sudry, T., Flaks-Manov, N., Yehezkelli, Y., Kalkstein, N., Akiva, P., Ekka-Zohar, A., Ben David, S. S., Lerner, U., Bivas-Benita, M., & Greenfeld, S. (2023). Long covid outcomes at one year after mild SARS-CoV-2 infection: Nationwide cohort study. BMJ, 380, e072529. https://doi.org/10.1136/bmj-2022-072529
  • Moraes, V. Y., Marra, A. R., Matos, L. L., Neto, A. S., Rizzo, L. V., Neto, M. C., & Lenza, M. (2022). Hydroxychloroquine for treatment of COVID-19 patients: A systematic review and meta-analysis of randomized controlled trials. Einstein (Sao Paulo), 20P, eRW0045. https://doi.org/10.31744/einstein_journal/2022RW0045
  • Nader, D. A., & Schillaci, R. F. (1983). Pulmonary Infiltrates with Eosinophilia due to Naproxen. Chest, 83(2), 280–282. https://doi.org/10.1378/chest.83.2.280
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/jcc.20289
  • Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S., Wells, A., Doig, A., Guilliams, T., Latimer, J., McNamee, C., Norris, A., Sanseau, P., Cavalla, D., & Pirmohamed, M. (2019). Drug repurposing: Progress, challenges and recommendations. Nature Reviews Drug Discovery, 18(1), 41–58. https://doi.org/10.1038/nrd.2018.168
  • Ridings, J. E. (2013). The thalidomide disaster, lessons from the past. Methods in Molecular Biology. 947, 575–586.
  • Rodrigues, L., Bento Cunha, R., Vassilevskaia, T., Viveiros, M., & Cunha, C. (2022). Drug repurposing for COVID-19: A review and a novel strategy to identify new targets and potential drug candidates. Molecules (Basel, Switzerland), 27(9), 2723. https://doi.org/10.3390/molecules27092723
  • Ruigrok, R. W., Crépin, T., & Kolakofsky, D. (2011). Nucleoproteins and nucleocapsids of negative-strand RNA viruses. Current Opinion in Microbiology, 14(4), 504–510. https://doi.org/10.1016/j.mib.2011.07.011
  • Saikatendu, K. S., Joseph, J. S., Subramanian, V., Neuman, B. W., Buchmeier, M. J., Stevens, R. C., & Kuhn, P. (2007). Ribonucleocapsid formation of severe acute respiratory syndrome coronavirus through molecular action of the N-terminal domain of N protein. Journal of Virology, 81(8), 3913–3921. https://doi.org/10.1128/JVI.02236-06
  • Sibilio, P., Bini, S., Fiscon, G., Sponziello, M., Conte, F., Pecce, V., Durante, C., Paci, P., Falcone, R., Norata, G. D., Farina, L., & Verrienti, A. (2021). In silico drug repurposing in COVID-19: A network-based analysis. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 142, 111954. https://doi.org/10.1016/j.biopha.2021.111954
  • Strom, B. L., Schinnar, R., Bilker, W. B., Feldman, H., Farrar, J. T., & Carson, J. L. (1997). Gastrointestinal tract bleeding associated with naproxen sodium vs ibuprofen. Archives of Internal Medicine, 157(22), 2626–2631. https://doi.org/10.1001/archinte.1997.00440430108013
  • Taghiloo, S., Dabiri, M., Valadan, R., & Asgarian-Omran, H. (2022). Designing an ELISA method for measurement of human IgG and IgM antibodies against SARS-CoV-2. Journal of Mazandaran University of Medical Sciences, 32(210), 26–36.
  • Tarus, B., Chevalier, C., Richard, C.-A., Delmas, B., Di Primo, C., & Slama-Schwok, A. (2012). Molecular dynamics studies of the nucleoprotein of influenza A virus: Role of the protein flexibility in RNA binding. PLoS One, 7(1), e30038. https://doi.org/10.1371/journal.pone.0030038
  • Terrier, O., Dilly, S., Pizzorno, A., Chalupska, D., Humpolickova, J., Bouřa, E., Berenbaum, F., Quideau, S., Lina, B., Fève, B., Adnet, F., Sabbah, M., Rosa-Calatrava, M., Maréchal, V., Henri, J., & Slama-Schwok, A. (2021). Antiviral properties of the NSAID drug naproxen targeting the nucleoprotein of SARS-CoV-2 coronavirus. Molecules (Basel, Switzerland), 26(9), 2593. https://doi.org/10.3390/molecules26092593
  • Wang, J. (2020). Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study. Journal of Chemical Information and Modeling, 60(6), 3277–3286. https://doi.org/10.1021/acs.jcim.0c00179
  • Wang, J., Zhang, Y., Nie, W., Luo, Y., & Deng, L. (2022). Computational anti-COVID-19 drug design: Progress and challenges. Brief Bioinform, 23(1), bbab484. https://doi.org/10.1093/bib/bbab484
  • Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., & Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica. B, 10(5), 766–788. https://doi.org/10.1016/j.apsb.2020.02.008
  • Yang, H., & Rao, Z. (2021). Structural biology of SARS-CoV-2 and implications for therapeutic development. Nature Reviews. Microbiology, 19(11), 685–700. https://doi.org/10.1038/s41579-021-00630-8
  • Yu, I. M., Gustafson, C. L. T., Diao, J., Burgner, J. W., Li, Z., Zhang, J., & Chen, J. (2005). Recombinant severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein forms a dimer through its C-terminal domain. The Journal of Biological Chemistry, 280(24), 23280–23286. https://doi.org/10.1074/jbc.M501015200
  • Yu, I. M., Oldham, M. L., Zhang, J., & Chen, J. (2006). Crystal structure of the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein dimerization domain reveals evolutionary linkage between corona- and arteriviridae. The Journal of Biological Chemistry, 281(25), 17134–17139. https://doi.org/10.1074/jbc.M602107200
  • Zheng, W., Fan, W., Zhang, S., Jiao, P., Shang, Y., Cui, L., Mahesutihan, M., Li, J., Wang, D., Gao, G. F., Sun, L., & Liu, W. (2019). Naproxen exhibits broad anti-influenza virus activity in mice by impeding viral nucleoprotein nuclear export. Cell Reports, 27(6), 1875–1885.e5. https://doi.org/10.1016/j.celrep.2019.04.053
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A novel coronavirus from patients with Pneumonia in China, 2019. The New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.