62
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, antimicrobial properties and in silico evaluation of coumarin derivatives mediated by 1,4-dibromobutane

, , , , , , , & show all
Received 22 Aug 2023, Accepted 15 Feb 2024, Published online: 27 Feb 2024

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Alavijeh, M. S., Chishty, M., Qaiser, M. Z., & Palmer, A. M. (2005). Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx, 2(4), 554–571. https://doi.org/10.1602/neurorx.2.4.554
  • Alshibl, H. M., Al-Abdullah, E. S., Haiba, M. E., Alkahtani, H. M., Awad, G. E. A., Mahmoud, A. H., Ibrahim, B. M. M., Bari, A., & Villinger, A. (2020). Synthesis and evaluation of new coumarin derivatives as antioxidant, antimicrobial, and anti-inflammatory agents. Molecules, 25(14), 3251. https://doi.org/10.3390/molecules25143251
  • Annunziata, F., Pinna, C., Dallavalle, S., Tamborini, L., & Pinto, A. (2020). An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities. International Journal of Molecular Sciences, 21(13), 4618. https://doi.org/10.3390/ijms21134618
  • Armengol, E. S., Harmanci, M., & Laffleur, F. (2021). Current strategies to determine antifungal and antimicrobial activity of natural compounds. Microbiological Research, 252, 126867. https://doi.org/10.1016/j.micres.2021.126867
  • Arnott, J. A., & Planey, S. L. (2012). The influence of lipophilicity in drug discovery and design. Expert Opinion on Drug Discovery, 7(10), 863–875. https://doi.org/10.1517/17460441.2012.714363
  • Aronov, A. M. (2006). Common pharmacophores for uncharged human ether-a-go-go-related gene (hERG) blockers. Journal of Medicinal Chemistry, 49(23), 6917–6921. https://doi.org/10.1021/jm060500o
  • Bautista-Aguilera, Ó. M., Ismaili, L., Chioua, M., Andrys, R., Schmidt, M., Bzonek, P., Martínez-Grau, M. Á., Beadle, C. D., Vetman, T., López-Muñoz, F., Iriepa, I., Refouvelet, B., Musilek, K., & Marco-Contelles, J. (2020). Acetylcholinesterase inhibition of diversely functionalized quinolinones for Alzheimer’s disease therapy. International Journal of Molecular Sciences, 21(11), 3913. https://doi.org/10.3390/ijms21113913
  • Cheke, R. S., Patel, H. M., Patil, V. M., Ansari, I. A., Ambhore, J. P., Shinde, S. D., Kadri, A., Snoussi, M., Adnan, M., Kharkar, P. S., Pasupuleti, V. R., & Deshmukh, P. K. (2022). Molecular insights into coumarin analogues as antimicrobial agents: Recent developments in drug discovery. Antibiotics, 11(5), 566. https://doi.org/10.3390/antibiotics11050566
  • Chen, L. J., Lian, G. P., & Han, L. J. (2007). Prediction of human skin permeability using artificial neural network (ANN) modeling1. Acta Pharmacologica Sinica, 28(4), 591–600. https://doi.org/10.1111/j.1745-7254.2007.00528.x
  • Chimi, S. F., Ewonkem, M. B., Tiakouang, E. N., Moto, J. O., Adjieufack, A. I., Deussom, P. M., Mbock, M. A., Wansi, D. J., Alfred, F. A., & Toze, A. F. A. (2023). In vitro and in silico studies of antibacterial activities of secofriedelane derivatives from Senna alata (L) Roxb. Natural Product Research, 1–14. https://doi.org/10.1080/14786419.2023.2247537
  • Choudhary, M., Kumar, V., Naik, B., Verma, A., Saris, P. E. J., Kumar, V., & Gupta, S. (2022). Antifungal metabolites, their novel sources, and targets to combat drug resistance. Frontiers in Microbiology, 13, 1061603. https://doi.org/10.3389/fmicb.2022.1061603
  • Chougala, B. M., Samundeeswari, S., Holiyachi, M., Naik, N. S., Shastri, L. A., Dodamani, S., Jalalpure, S., Dixit, S. R., Joshi, S. D., & Sunagar, V. A. (2018). Green, unexpected synthesis of bis-coumarin derivatives as potent anti-bacterial and anti-inflammatory agents. European Journal of Medicinal Chemistry, 143, 1744–1756. https://doi.org/10.1016/j.ejmech.2017.10.072
  • Cui, X., Wang, L., Lü, Y., & Yue, C. (2022). Development and research progress of anti-drug resistant fungal drugs. Journal of Infection and Public Health, 15(9), 986–1000. https://doi.org/10.1016/j.jiph.2022.08.004
  • Detsi, A., Kontogiorgis, C., & Hadjipavlou-Litina, D. (2017). Coumarin derivatives: An updated patent review. 2015–2016. Expert Opinion on Therapeutic Patents, 27(11), 1201–1226. https://doi.org/10.1080/13543776.2017.1360284
  • Dettori, T., Sanna, G., Cocco, A., Serreli, G., Deiana, M., Palmas, V., Onnis, V., Pilia, L., Melis, N., Moi, D., Caria, P., & Secci, F. (2022). Synthesis and antiproliferative effect of halogenated coumarin derivatives. Molecules, 27(24), 8897. https://doi.org/10.3390/molecules27248897
  • Ewonkem, M. B., Deussom, P. M., Mbock, M. A., Tiakouang, E. N., Toze, A. F. A., & Wansi, J. D. (2023). Antibacterial, antifungal activities and toxicity of new synthetic fatty acid salicylate esters. Medicinal Chemistry Research, 32(4), 736–748. https://doi.org/10.1007/s00044-023-03034-w
  • Flores-Morales, V., Villasana-Ruíz, P., Garza-Veloz, I., González-Delgado, S., & Martinez-Fierro, M. L. (2023). Therapeutic effects of coumarins with different substitution patterns. Molecules, 28(5), 2413. https://doi.org/10.3390/molecules28052413
  • Franco, V., Gershkovich, P., Perucca, E., & Bialer, M. (2020). The interplay between liver first-pass effect and lymphatic absorption of cannabidiol and its implications for cannabidiol oral formulations. Clinical Pharmacokinetics, 59(12), 1493–1500. https://doi.org/10.1007/s40262-020-00931-w
  • Frisch, M., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., & Petersson, G. A. (2016)., Gaussian 16, revision A. 03. Gaussian Inc.
  • García, S., Mercado-Sánchez, I., Bahena, L., Alcaraz, Y., García-Revilla, M. A., Robles, J., Santos-Martínez, N., Ordaz-Rosado, D., García-Becerra, R., & Vazquez, M. A. (2020). Design of fluorescent coumarin-hydroxamic acid derivatives as inhibitors of HDACs: Synthesis, anti-proliferative evaluation and docking studies. Molecules, 25(21), 5134. https://doi.org/10.3390/molecules25215134
  • Georgieva, I., Kostova, I., Trendafilova, N., Rastogi, V. K., & Kiefer, W. (2010). DFT, IR, Raman and NMR study of the coordination ability of coumarin-3-carboxylic acid to Pr(III). Journal of Molecular Structure. 979(1–3), 115–121. https://doi.org/10.1016/j.molstruc.2010.06.013
  • Gerebtzoff, G., Li-Blatter, X., Fischer, H., Frentzel, A., & Seelig, A. (2004). Halogenation of drugs enhances membrane binding and permeation. Chembiochem, 5(5), 676–684. https://doi.org/10.1002/cbic.200400017.
  • Hu, Y., Shen, Y., Wu, X., Tu, X., & Wang, G.-X. (2018). Synthesis and biological evaluation of coumarin derivatives containing imidazole skeleton as potential antibacterial agents. European Journal of Medicinal Chemistry, 143, 958–969. https://doi.org/10.1016/j.ejmech.2017.11.100
  • Huang, L., Su, T., & Li, X. (2013). Natural products as sources of new lead compounds for the treatment of Alzheimer’s disease. Current Topics in Medicinal Chemistry, 13(15), 1864–1878. https://doi.org/10.2174/15680266113139990142
  • Irvine, J. D., Takahashi, L., Lockhart, K., Cheong, J., Tolan, J. W., Selick, H. E., & Grove, J. R. (1999). MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening. Journal of Pharmaceutical Sciences, 88(1), 28–33. https://doi.org/10.1021/js9803205.
  • Jeffries, B., Wang, Z., Troup, R. I., Goupille, A., Jean-Questel, Y. L., Fallan, C., Scott, J. S., Chiarparin, E., Graton, J., & Linclau, B. (2020). Lipophilicity trends upon fluorination of isopropyl, cyclopropyl and 3-oxetanyl groups. Beilstein Journal of Organic Chemistry, 16, 2141–2150. https://doi.org/10.3762/bjoc.16.182
  • Kalinowska, M., Bajko, E., Matejczyk, M., Kaczyński, P., Łozowicka, B., & Lewandowski, W. (2018). The study of anti-/pro-oxidant, lipophilic, microbial and spectroscopic properties of new alkali metal salts of 5-O-caffeoylquinic acid. International Journal of Molecular Sciences, 19(2), 463. https://doi.org/10.3390/ijms19020463
  • Kamiya, Y., Omura, A., Hayasaka, R., Saito, R., Sano, I., Handa, K., Ohori, J., Kitajima, M., Shono, F., Funatsu, K., & Yamazaki, H. (2021). Prediction of permeability across intestinal cell monolayers for 219 disparate chemicals using in vitro experimental coefficients in a pH gradient system and in silico analyses by trivariate linear regressions and machine learning. Biochemical Pharmacology, 192, 114749. https://doi.org/10.1016/j.bcp.2021.114749
  • Kasumbwe, K., Venugopala, K. N., Mohanlall, V., & Odhav, B. (2014). Antimicrobial and antioxidant activities of substituted halogenated coumarins. Journal of Medicinal Plants Research, 8(5), 274–281. https://doi.org/10.5897/JMPR2013.4419
  • Látrová, K., Havlová, N., Večeřová, R., Pinkas, D., Bogdanová, K., Kolář, M., Fišer, R., Konopásek, I., Do Pham, D. D., Rejman, D., & Mikušová, G. (2021). Outer membrane and phospholipid composition of the target membrane affect the antimicrobial potential of first- and second-generation lipophosphonoxins. Scientific Reports, 11(1), 10446. https://doi.org/10.1038/s41598-021-89883-0
  • Leedale, J. A., Kyffin, J. A., Harding, A. L., Colley, H. E., Murdoch, C., Sharma, P., Williams, D. P., Webb, S. D., & Bearon, R. N. (2020). Multiscale modelling of drug transport and metabolism in liver spheroids. Interface Focus, 10(2), 20190041. https://doi.org/10.1098/rsfs.2019.0041
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0.
  • Lu, Y., Mahaut-Smith, M. P., Varghese, A., Huang, C. L.-H., Kemp, P. R., & Vandenberg, J. I. (2001). Effects of premature stimulation on HERG K + channels. The Journal of Physiology, 537(Pt 3), 843–851. https://doi.org/10.1111/j.1469-7793.2001.00843.x
  • Melliou, E., Magiatis, P., Mitaku, S., Skaltsounis, A. L., Chinou, E., & Chinou, I. (2005). Natural and synthetic 2,2-dimethylpyranocoumarins with antibacterial activity. Journal of Natural Products, 68(1), 78–82. https://doi.org/10.1021/np0497447
  • Morak-Młodawska, B., Jeleń, M., Martula, E., & Korlacki, R. (2023). Study of lipophilicity and ADME properties of 1,9-diazaphenothiazines with anticancer action. International Journal of Molecular Sciences, 24(8), 6970. https://doi.org/10.3390/ijms24086970
  • Najafi, Z., Mahdavi, M., Saeedi, M., Karimpour-Razkenari, E., Edraki, N., Sharifzadeh, M., Khanavi, M., & Akbarzadeh, T. (2019). Novel tacrine-coumarin hybrids linked to 1,2,3-triazole as anti-Alzheimer’s compounds: In vitro and in vivo biological evaluation and docking study. Bioorganic Chemistry, 83, 303–316. https://doi.org/10.1016/j.bioorg.2018.10.056
  • Oprea, T. I. (2000). Property distribution of drug related chemical databases. Journal of Computer-Aided Molecular Design, 14(3), 251–264. https://doi.org/10.1023/a:1008130001697
  • Pan, L., Li, X.-Z., Sun, D.-A., Jin, H., Guo, H.-R., & Qin, B. (2016). Design and synthesis of novel coumarin analogs and their nematicidal activity against five phytonematodes. Chinese Chemical Letters, 27(3), 375–379. https://doi.org/10.1016/j.cclet.2016.01.029
  • Patil, P. O., Bari, S. B., Firke, S. D., Deshmukh, P. K., Donda, S. T., & Patil, D. A. F. (2013). A comprehensive review on synthesis and designing aspects of coumarin derivatives as monoamine oxidase inhibitors for depression and Alzheimer’s disease. Bioorganic and Medicinal Chemistry. 21(9), 2434–2450. https://doi.org/10.1016/j.bmc.2013.02.017
  • Prabhakara, C. T., Patil, S. A., Toragalmath, S. S., Kinnal, S. M., & Badami, P. S. (2016). Synthesis, characterization and biological approach of metal chelates of some first row transition metal ions with halogenated bidentate coumarin Schiff bases containing N and O donor atoms. Journal of Photochemistry and Photobiology-B, Biology, 157, 1–14. https://doi.org/10.1016/j.jphotobiol.2016.02.004
  • Prasanna, S., & Doerksen, R. J. (2009). Topological polar surface area: A useful descriptor in 2D-QSAR. Current Medicinal Chemistry, 16(1), 21–41. https://doi.org/10.2174/092986709787002817
  • Ren, Q.-C., Gao, C., Xu, Z., Feng, L.-S., Liu, M.-L., Wu, X., & Zhao, F. (2018). Bis-coumarin derivatives and their biological activities. Current Topics in Medicinal Chemistry, 18(2), 101–113. https://doi.org/10.2174/1568026618666180221114515
  • Rutkowska, E., Pajak, K., & Jozwiak, K. (2013). Lipophilicity methods of determination and its role in medicinal chemistry. Acta Polym. Pharmaceutica, 70(1), 3–18. https://doi.org/10.1177/pubmed.ncbi.nlm.nih.gov/23610954
  • Sahoo, C. R., Sahoo, J., Mahapatra, M., Lenka, D., Sahu, P. K., Dehury, B., Padhy, R. N., & Paidesetty, S. K. (2021). Coumarin derivatives as promising antibacterial agent(s). Arabian Journal of Chemistry, 14(2), 102922. https://doi.org/10.1016/j.arabjc.2020.102922
  • Santos Junior, C. M., Silva, S. M. C., Sales, E. M., Velozo, E. D S., Dos Santos, E. K. P., Canuto, G. A. B., Azeredo, F. J., Barros, T. F., & Biegelmeyer, R. (2023). Chemical diversity and biological activities. Fitoterapia, 168, 105489. https://doi.org/10.1016/j.fitote.2023.105489
  • Schrödinger. (2011). QikProp, version 3.4. LLC.
  • Sharifi-Rad, J., Cruz-Martins, N., López-Jornet, P., Lopez, E. P.-F., Harun, N., Yeskaliyeva, B., Beyatli, A., Sytar, O., Shaheen, S., Sharopov, F., Taheri, Y., Docea, A. O., Calina, D., & Cho, W. C. (2021). Natural coumarins: Exploring the pharmacological complexity and underlying molecular mechanisms. Oxidative Medicine and Cellular Longevity, 2021, 6492346. https://doi.org/10.1155/2021/6492346
  • Turner, P. J. (2005). XMGRACE, version 5.1.19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, Beaverton, OR.
  • Vandenberg, J. I., Perry, M. D., Perrin, M. J., Mann, S. A., Ke, Y., & Hill, A. P. (2012). HERG K(+) channels: Structure, function, and clinical significance. Physiological Reviews, 92(3), 1393–1478. https://doi.org/10.1152/physrev.00036.2011
  • Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W., & Taylor, R. D. (2003). Improved protein–ligand docking using gold. Proteins, 52(4), 609–623. https://doi.org/10.1002/prot.10465
  • Winata, A. W., Rahayu, D. U. C., Handayani, S., & Dianhar, H. (2020). Microwave-assisted synthesis of 7-hydroxy-4-methyl coumarin and its bioactivity against acne-causing bacteria. IOP Conference Series: Materials Science and Engineering, 902(1), 012069. https://doi.org/10.1088/1757-899X/902/1/012069
  • World Health Organization. (2021). Antimicrobial resistance. Key facts. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed May 31, 2023).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.