79
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A hierarchical approach towards identification of novel inhibitors against L, D-transpeptidase YcbB as an anti-bacterial therapeutic target

, , & ORCID Icon
Received 22 Oct 2023, Accepted 16 Feb 2024, Published online: 27 Feb 2024

References

  • Abbasi, S., Raza, S., Azam, S. S., Liedl, K. R., & Fuchs, J. E. (2016). Interaction mechanisms of a melatonergic inhibitor in the melatonin synthesis pathway. Journal of Molecular Liquids, 221, 507–517. https://doi.org/10.1016/j.molliq.2016.06.034
  • Ahmad, S., Navid, A., Akhtar, A. S., Azam, S. S., Wadood, A., & Pérez-Sánchez, H. (2019). Subtractive genomics, molecular docking and molecular dynamics simulation revealed LpxC as a potential drug target against multi-drug resistant Klebsiella pneumoniae. Interdisciplinary Sciences, Computational Life Sciences, 11(3), 508–526. https://doi.org/10.1007/s12539-018-0299-y
  • Ahmad, S., Raza, S., Abro, A., Liedl, K. R., & Azam, S. S. (2019). Toward novel inhibitors against KdsB: A highly specific and selective broad-spectrum bacterial enzyme. Journal of Biomolecular Structure & Dynamics, 37(5), 1326–1345. https://doi.org/10.1080/07391102.2018.1459318
  • Ahmad, S., Raza, S., Uddin, R., & Azam, S. S. (2017). Binding mode analysis, dynamic simulation and binding free energy calculations of the MurF ligase from Acinetobacter baumannii. Journal of Molecular Graphics & Modelling, 77, 72–85. https://doi.org/10.1016/j.jmgm.2017.07.024
  • Ahmad, S., Raza, S., Uddin, R., & Azam, S. S. (2018). Comparative subtractive proteomics based ranking for antibiotic targets against the dirtiest superbug: Acinetobacter baumannii. Journal of Molecular Graphics & Modelling, 82, 74–92. https://doi.org/10.1016/j.jmgm.2018.04.005
  • Ahmad, S., Waheed, Y., Abro, A., Abbasi, S. W., & Ismail, S. (2021). Molecular screening of glycyrrhizin-based inhibitors against ACE2 host receptor of SARS-CoV-2. Journal of Molecular Modeling, 27(7), 206. https://doi.org/10.1007/s00894-021-04816-y
  • Alamri, M. A., Ahmad, S., Alqahtani, S. M., Irfan, M., Alabbas, A. B., & Tahir Ul Qamar, M. (2023). Screening of marine natural products for potential inhibitors targeting biotin biosynthesis pathway in Mycobacterium tuberculosis. Journal of Biomolecular Structure & Dynamics, 41(17), 8535–8543. https://doi.org/10.1080/07391102.2022.2135596
  • Alamri, M. A., Tariq, M. H., Tahir Ul Qamar, M., Alabbas, A. B., Alqahtani, S. M., & Ahmad, S. (2023). Discovery of potential phytochemicals as inhibitors of TcdB, a major virulence factors of Clostridioides difficile. Journal of Biomolecular Structure & Dynamics, 41(22), 12768–12776. https://doi.org/10.1080/07391102.2023.2167120
  • Altharawi, A., Ahmad, S., Alamri, M. A., & Ul Qamar, M. T. (2021). Structural insight into the binding pattern and interaction mechanism of chemotherapeutic agents with Sorcin by docking and molecular dynamic simulation. Colloids and Surfaces. B, Biointerfaces, 208, 112098. https://doi.org/10.1016/j.colsurfb.2021.112098
  • Atwal, S., Chuenklin, S., Bonder, E. M., Flores, J., Gillespie, J. J., Driscoll, T. P., & Salje, J. (2021). Discovery of a diverse set of bacteria that build their cell walls without the canonical peptidoglycan polymerase aPBP. mBio, 12(4), e0134221. https://doi.org/10.1128/mBio.01342-21
  • Bassani, D., & Moro, S. (2023). Past, present, and future perspectives on computer-aided drug design methodologies. Molecules (Basel, Switzerland), 28(9), 3906. https://doi.org/10.3390/molecules28093906
  • Bergström, C. A. S., & Larsson, P. (2018). Computational prediction of drug solubility in water-based systems: Qualitative and quantitative approaches used in the current drug discovery and development setting. International Journal of Pharmaceutics, 540(1–2), 185–193. https://doi.org/10.1016/j.ijpharm.2018.01.044
  • Bugg, T. D. H., Braddick, D., Dowson, C. G., & Roper, D. I. (2011). Bacterial cell wall assembly: Still an attractive antibacterial target. Trends in Biotechnology, 29(4), 167–173. https://doi.org/10.1016/j.tibtech.2010.12.006
  • Butt, S. S., Badshah, Y., Shabbir, M., & Rafiq, M. (2020). Molecular docking using chimera and autodock vina software for nonbioinformaticians. JMIR Bioinformatics and Biotechnology, 1(1), e14232. https://doi.org/10.2196/14232
  • Case, D. A., Duke, R. E., Walker, R. C., Skrynnikov, N. R., Cheatham, T. E., III, Mikhailovskii, O., Simmerling, C., Xue, Y., Roitberg, A., & Izmailov, S. A. (2022). AMBER 22 Reference Manual.
  • Caveney, N. A., Caballero, G., Voedts, H., Niciforovic, A., Worrall, L. J., Vuckovic, M., Fonvielle, M., Hugonnet, J.-E., Arthur, M., & Strynadka, N. C. J. (2019). Structural insight into YcbB-mediated beta-lactam resistance in Escherichia coli. Nature Communications, 10(1), 1849. https://doi.org/10.1038/s41467-019-09507-0
  • Caveney, N. A., Serapio-Palacios, A., Woodward, S. E., Bozorgmehr, T., Caballero, G., Vuckovic, M., Deng, W., Finlay, B. B., & Strynadka, N. C. J. (2021). Structural and cellular insights into the L, D-transpeptidase YcbB as a therapeutic target in Citrobacter rodentium, Salmonella Typhimurium, and Salmonella Typhi infections. Antimicrobial Agents and Chemotherapy, 65(2), 10–1128. https://doi.org/10.1128/AAC.01592-20
  • Cho, H. (2023). Assembly of bacterial surface glycopolymers as an antibiotic target. Journal of Microbiology (Seoul, Korea), 61(3), 359–367. https://doi.org/10.1007/s12275-023-00032-w
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. In Chemical biology (pp. 243–250). Springer.
  • Ding, Y., Tang, J., & Guo, F. (2017). Identification of protein-ligand binding sites by sequence information and ensemble classifier. Journal of Chemical Information and Modeling, 57(12), 3149–3161. https://doi.org/10.1021/acs.jcim.7b00307
  • Dörr, T., Moynihan, P. J., & Mayer, C. (2019). Bacterial cell wall structure and dynamics. In Frontiers in microbiology (Vol. 10, pp. 2051). Frontiers Media SA. https://doi.org/10.3389/fmicb.2019.02051
  • Durrant, J. D., & McCammon, J. A. (2011). Molecular dynamics simulations and drug discovery. BMC Biology, 9(1), 71. https://doi.org/10.1186/1741-7007-9-71
  • Egan, A. J. F., Errington, J., & Vollmer, W. (2020). Regulation of peptidoglycan synthesis and remodelling. Nature Reviews. Microbiology, 18(8), 446–460. https://doi.org/10.1038/s41579-020-0366-3
  • Egan, W. J., Merz, K. M., & Baldwin, J. J. (2000). Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21), 3867–3877. https://doi.org/10.1021/jm000292e
  • Ehsan, N., Ahmad, S., Navid, A., & Azam, S. S. (2018). Identification of potential antibiotic targets in the proteome of multi-drug resistant Proteus mirabilis. Meta Gene, 18, 167–173. https://doi.org/10.1016/j.mgene.2018.09.004
  • Fatima, I., Ahmad, S., Alamri, M. A., Mirza, M. U., Tahir Ul Qamar, M., Rehman, A., Shahid, F., Alatawi, E. A., Alkhayl, F. F. A., Al-Megrin, W. A., & Almatroudi, A. (2022). Discovery of Rift Valley fever virus natural pan-inhibitors by targeting its multiple key proteins through computational approaches. Scientific Reports, 12(1), 9260. https://doi.org/10.1038/s41598-022-13267-1
  • Fernandes, G. F. S., Thompson, A. M., Castagnolo, D., Denny, W. A., & Dos Santos, J. L. (2022). Tuberculosis drug discovery: Challenges and new horizons. Journal of Medicinal Chemistry, 65(11), 7489–7531. https://doi.org/10.1021/acs.jmedchem.2c00227
  • Genheden, S., Kuhn, O., Mikulskis, P., Hoffmann, D., & Ryde, U. (2012). The normal-mode entropy in the MM/GBSA method: Effect of system truncation, buffer region, and dielectric constant. Journal of Chemical Information and Modeling, 52(8), 2079–2088. https://doi.org/10.1021/ci3001919
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Green, D. W. (2002). The bacterial cell wall as a source of antibacterial targets. Expert Opinion on Therapeutic Targets, 6(1), 1–19. https://doi.org/10.1517/14728222.6.1.1
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM_PBSA and MM_GBSA methods. 1. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Huang, K., Luo, S., Cong, Y., Zhong, S., Zhang, J. Z. H., & Duan, L. (2020). An accurate free energy estimator: Based on MM/PBSA combined with interaction entropy for protein–ligand binding affinity. Nanoscale, 12(19), 10737–10750. https://doi.org/10.1039/c9nr10638c
  • Huey, R., Morris, G. M., & Forli, S. (2012). Using AutoDock 4 and AutoDock vina with AutoDockTools: A tutorial. Scripps Research Institute Molecular Graphics Laboratory, 10550, 91000–92037.
  • Jia, C.-Y., Li, J.-Y., Hao, G.-F., & Yang, G.-F. (2019). A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discovery Today, 25(1), 248–258. https://doi.org/10.1016/j.drudis.2019.10.014
  • Kaliappan, S., & Bombay, I. I. T. (2018). UCSF Chimera-Overview.
  • Karplus, M., & McCammon, J. A. (2002). Molecular dynamics simulations of biomolecules. Nature Structural Biology, 9(9), 646–652. https://doi.org/10.1038/nsb0902-646
  • Kräutler, V., van Gunsteren, W. F., & Hunenberger, P. H. (2001). A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. Journal of Computational Chemistry, 22(5), 501–508. https://doi.org/10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Maia, E. H. B., Assis, L. C., de Oliveira, T. A., da Silva, A. M., & Taranto, A. G. (2020). Structure-based virtual screening: From classical to artificial intelligence. Frontiers in Chemistry, 8, 343. https://doi.org/10.3389/fchem.2020.00343
  • Martínez de Tejada, G., Sánchez-Gómez, S., Rázquin-Olazaran, I., Kowalski, I., Kaconis, Y., Heinbockel, L., Andrä, J., Schürholz, T., Hornef, M., Dupont, A., Garidel, P., Lohner, K., Gutsmann, T., David, S. A., & Brandenburg, K. (2012). Bacterial cell wall compounds as promising targets of antimicrobial agents I. Antimicrobial peptides and lipopolyamines. Current Drug Targets, 13(9), 1121–1130. https://doi.org/10.2174/138945012802002410
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Muegge, I., Heald, S. L., & Brittelli, D. (2001). Simple selection criteria for drug-like chemical matter. Journal of Medicinal Chemistry, 44(12), 1841–1846. https://doi.org/10.1021/jm015507e
  • Mumtaz, A., Ashfaq, U. A., Ul Qamar, M. T., Anwar, F., Gulzar, F., Ali, M. A., Saari, N., & Pervez, M. T. (2017). MPD3: A useful medicinal plants database for drug designing. Natural Product Research, 31(11), 1228–1236. https://doi.org/10.1080/14786419.2016.1233409
  • Navid, A., Ahmad, S., Sajjad, R., Raza, S., & Azam, S. S. (2022). Structure based in silico screening revealed a potent Acinetobacter baumannii Ftsz inhibitor from asinex antibacterial library. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 19(5), 3008–3018. https://doi.org/10.1109/TCBB.2021.3103899
  • Ntie-Kang, F., Onguéné, P. A., Scharfe, M., Owono, L. C. O., Megnassan, E., Mbaze, L. M., Sippl, W., & Efange, S. M. N. (2014). ConMedNP: A natural product library from Central African medicinal plants for drug discovery. RSC Advance, 4(1), 409–419. https://doi.org/10.1039/C3RA43754J
  • Parker, M. F. L., Flavell, R. R., Luu, J. M., Rosenberg, O. S., Ohliger, M. A., & Wilson, D. M. (2020). Small molecule sensors targeting the bacterial cell wall. ACS Infectious Diseases, 6(7), 1587–1598. https://doi.org/10.1021/acsinfecdis.9b00515
  • Pasquina-Lemonche, L., Burns, J., Turner, R. D., Kumar, S., Tank, R., Mullin, N., Wilson, J. S., Chakrabarti, B., Bullough, P. A., Foster, S. J., & Hobbs, J. K. (2020). The architecture of the Gram-positive bacterial cell wall. Nature, 582(7811), 294–297. https://doi.org/10.1038/s41586-020-2236-6
  • Petersen, H. G. (1995). Accuracy and efficiency of the particle mesh Ewald method. Journal of Chemical Physics, 103(9), 3668–3679. https://doi.org/10.1063/1.470043
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Roe, D. R., & Cheatham, T. E. III. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Saha, N., & Azam, M. A. (2020). MurE inhibitors as antibacterial agents: A review. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 98(3–4), 127–136. https://doi.org/10.1007/s10847-020-01018-6
  • Sengupta, A., Li, Z., Song, L. F., Li, P., & Merz, K. M. Jr, (2021). Parameterization of monovalent ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB water models. Journal of Chemical Information and Modeling, 61(2), 869–880. https://doi.org/10.1021/acs.jcim.0c01390
  • Shaker, B., Ahmad, S., Lee, J., Jung, C., & Na, D. (2021). In silico methods and tools for drug discovery. Computers in Biology and Medicine, 137, 104851. https://doi.org/10.1016/j.compbiomed.2021.104851
  • Sydow, D., Morger, A., Driller, M., & Volkamer, A. (2019). TeachOpenCADD: A teaching platform for computer-aided drug design using open source packages and data. Journal of Cheminformatics, 11(1), 29. https://doi.org/10.1186/s13321-019-0351-x
  • Talele, T. T., Khedkar, S. A., & Rigby, A. C. (2010). Successful applications of computer aided drug discovery: Moving drugs from concept to the clinic. Current Topics in Medicinal Chemistry, 10(1), 127–141. https://doi.org/10.2174/156802610790232251
  • Tian, C., Kasavajhala, K., Belfon, K. A. A., Raguette, L., Huang, H., Migues, A. N., Bickel, J., Wang, Y., Pincay, J., Wu, Q., & Simmerling, C. (2019). ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. Journal of Chemical Theory and Computation, 16(1), 528–552. https://doi.org/10.1021/acs.jctc.9b00591
  • Toth, M., Lee, M., Stewart, N. K., & Vakulenko, S. B. (2022). Effects of Inactivation of d, d-transpeptidases of Acinetobacter baumannii on bacterial growth and susceptibility to $β$-lactam antibiotics. Antimicrobial Agents and Chemotherapy, 66(1), e01729–21. https://doi.org/10.1128/AAC.01729-21
  • Toth, M., Stewart, N. K., Smith, C. A., Lee, M., & Vakulenko, S. B. (2022). The l, d-transpeptidase LdtAb from Acinetobacter baumannii is poorly inhibited by carbapenems and has a unique structural architecture. ACS Infectious Diseases, 8(9), 1948–1961. https://doi.org/10.1021/acsinfecdis.2c00321
  • Van De Waterbeemd, H., & Gifford, E. (2003). ADMET in silico modelling: Towards prediction paradise? Nature Reviews. Drug Discovery, 2(3), 192–204. https://doi.org/10.1038/nrd1032
  • Van Drie, J. H. (2007). Computer-aided drug design: The next 20 years. Journal of Computer-Aided Molecular Design, 21(10–11), 591–601. https://doi.org/10.1007/s10822-007-9142-y
  • Vassetti, D., Pagliai, M., & Procacci, P. (2019). Assessment of GAFF2 and OPLS-AA general force fields in combination with the water models TIP3P, SPCE, and OPC3 for the solvation free energy of druglike organic molecules. Journal of Chemical Theory and Computation, 15(3), 1983–1995. https://doi.org/10.1021/acs.jctc.8b01039
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2001). Antechamber: An accessory software package for molecular mechanical calculations. Journal of the American Chemical Society, 222, U403.
  • Whitty, A. (2011). Growing PAINS in academic drug discovery. Future Medicinal Chemistry, 3(7), 797–801. https://doi.org/10.4155/fmc.11.44
  • Woods, C. J., Malaisree, M., Michel, J., Long, B., McIntosh-Smith, S., & Mulholland, A. J. (2014). Rapid decomposition and visualisation of protein-ligand binding free energies by residue and by water. Faraday Discussions, 169, 477–499. https://doi.org/10.1039/c3fd00125c
  • Yu, W., & MacKerell, A. D. (2017). Computer-aided drug design methods. In Antibiotics (pp. 85–106). Springer.
  • Zhao, G., Tian, X., Wang, J., Cheng, M., Zhang, T., & Wang, Z. (2021). The structure-based virtual screening of non-benzofuran inhibitors against M. tuberculosis Pks13-TE for anti-tuberculosis phenotypic discovery. New Journal of Chemistry, 45(3), 1286–1300. https://doi.org/10.1039/D0NJ03828H

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.