111
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biochemical and computational inhibition of α-glucosidase by novel metronidazole-linked 1H-1,2,3-triazole and carboxylate moieties: kinetics and dynamic investigations

, , , , , , , , ORCID Icon & ORCID Icon show all
Received 19 Sep 2023, Accepted 16 Feb 2024, Published online: 03 Mar 2024

References

  • Abdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A., & Awad, G. E. (2012). Design and synthesis of new 4-pyrazolin-3-yl-1, 2, 3-triazoles and 1, 2, 3-triazol-4-yl-pyrazolin-1-ylthiazoles as potential antimicrobial agents. European Journal of Medicinal Chemistry, 52, 263–268. https://doi.org/10.1016/j.ejmech.2012.03.023
  • Aftab, H., Ambreen, A., Jamil, M., Garred, P., Petersen, J. H., Nielsen, S. D., Bygbjerg, I. C., & Christensen, D. L. (2017). High prevalence of diabetes and anthropometric heterogeneity among tuberculosis patients in Pakistan. Tropical Medicine & International Health: TM & IH, 22(4), 465–473. https://doi.org/10.1111/tmi.12842
  • Akhter, S., Ullah, S., Yousuf, S., Siddiqui, H., Choudhary, M. I., & Atia-Tul-Wahab. (2021) Synthesis, crystal structure and Hirshfeld surface analysis of benzamide derivatives of thiourea as potent inhibitors of α-glucosidase in-vitro. Bioorganic chemistry, 107, 104531. https://doi.org/10.1016/j.bioorg.2020.104531
  • Alam, A., Ali, M., Rehman, N. U., Ullah, S., Halim, S. A., Latif, A., Khan, A., Ullah, O., Ahmad, S., Al-Harrasi, A., Ahmad, M., & Zainab. (2022). Bio-oriented synthesis of novel (S)-flurbiprofen clubbed hydrazone Schiff’s bases for diabetic management: In vitro and in silico studies. Pharmaceuticals, 15 (6), 672. https://doi.org/10.3390/ph15060672
  • Ali, S., Ali, M., Khan, A., Ullah, S., Waqas, M., Al-Harrasi, A., Latif, A., Ahmad, M., & Saadiq, M. (2022). Novel 5-(Arylideneamino)-1 H-benzo [d] imidazole-2-thiols as potent anti-diabetic agents: Synthesis, in vitro α-glucosidase inhibition, and molecular docking studies. ACS Omega, 7(48), 43468–43479. https://doi.org/10.1021/acsomega.2c03854
  • Avula, S. K., Khan, A., Rehman, N. U., Anwar, M. U., Al-Abri, Z., Wadood, A., Riaz, M., Csuk, R., & Al-Harrasi, A. (2018). Synthesis of 1H-1, 2, 3-triazole derivatives as new α-glucosidase inhibitors and their molecular docking studies. Bioorganic Chemistry, 81, 98–106. https://doi.org/10.1016/j.bioorg.2018.08.008
  • Avula, S. K., Shah, S. R., Al-Hosni, K., Anwar, M. U., Csuk, R., Das, B., & Al-Harrasi, A. (2021). Synthesis and antimicrobial activity of 1H-1, 2, 3-triazole and carboxylate analogues of metronidazole. Beilstein Journal of Organic Chemistry, 17(1), 2377–2384. https://doi.org/10.3762/bjoc.17.154
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
  • Baran, P. S., Zografos, A. L., & O'Malley, D. P. (2004). Short total synthesis of (±)-sceptrin. Journal of the American Chemical Society, 126(12), 3726–3727. https://doi.org/10.1021/ja049648s
  • Bera, S., & Linhardt, R. J. (2011). Design and synthesis of unnatural heparosan and chondroitin building blocks. Journal of Organic Chemistry, 76(9), 3181–3193. https://doi.org/10.1021/jo200076z
  • Blender – a 3D modelling and rendering package. (2018).
  • Cai, X., Yang, W., Zhou, L., Zhang, S., Han, X., & Ji, L. (2015). Comparisons of the efficacy of glucose control, lipid profile, and β-cell function between DPP-4 inhibitors and AGI treatment in type 2 diabetes patients: A meta-analysis. Endocrine, 50(3), 590–597. https://doi.org/10.1007/s12020-015-0653-3
  • Case, D. A., Belfon, K., Ben-Shalom, I., Brozell, S. R., Cerutti, D., Cheatham, T., Cruzeiro, V. W. D., Darden, T., Duke, R. E., & Giambasu, G. (2020). Amber, 2020.
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Di Stefano, E., Oliviero, T., & Udenigwe, C. C. (2018). Functional significance and structure–activity relationship of food-derived α-glucosidase inhibitors. Current Opinion in Food Science, 20, 7–12. https://doi.org/10.1016/j.cofs.2018.02.008
  • Dong, J., Wang, N.-N., Yao, Z.-J., Zhang, L., Cheng, Y., Ouyang, D., Lu, A.-P., & Cao, D.-S. (2018). ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. Journal of Cheminformatics, 10(1), 29. https://doi.org/10.1186/s13321-018-0283-x
  • Egan, W. J., Merz, K. M., & Baldwin, J. J. (2000). Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21), 3867–3877. https://doi.org/10.1021/jm000292e
  • Esmaili, S., Ebadi, A., Khazaei, A., Ghorbani, H., Faramarzi, M. A., Mojtabavi, S., Mahdavi, M., & Najafi, Z. (2023). Novel pyrano [3, 2-c] quinoline-1, 2, 3-triazole hybrids as potential anti-diabetic agents: In vitro α-glucosidase inhibition, kinetic, and molecular dynamics simulation. ACS Omega, 8(26), 23412–23424. https://doi.org/10.1021/acsomega.3c00133
  • Faghih-Mirzaei, E., Sabouri, S., Zeidabadinejad, L., AbdolahRamazani, S., Abaszadeh, M., Khodadadi, A., Shamsadinipour, M., Jafari, M., & Pirhadi, S. (2019). Metronidazole aryloxy, carboxy and azole derivatives: Synthesis, anti-tumor activity, QSAR, molecular docking and dynamics studies. Bioorganic & Medicinal Chemistry, 27(2), 305–314. https://doi.org/10.1016/j.bmc.2018.12.003
  • Fallah, Z., Tajbakhsh, M., Alikhani, M., Larijani, B., Faramarzi, M. A., Hamedifar, H., Mohammadi-Khanaposhtani, M., & Mahdavi, M. (2022). A review on synthesis, mechanism of action, and structure-activity relationships of 1, 2, 3-triazole-based α-glucosidase inhibitors as promising anti-diabetic agents. Journal of Molecular Structure, 1255, 132469. https://doi.org/10.1016/j.molstruc.2022.132469
  • Ferreira, S. B., Sodero, A. C., Cardoso, M. F., Lima, E. S., Kaiser, C. R., Silva, F. P., Jr,., & Ferreira, V. F. (2010). Synthesis, biological activity, and molecular modeling studies of 1 h-1, 2, 3-triazole derivatives of carbohydrates as α-glucosidases inhibitors. Journal of Medicinal Chemistry, 53(6), 2364–2375. https://doi.org/10.1021/jm901265h
  • Gao, X., Cai, X., Yang, W., Chen, Y., Han, X., & Ji, L. (2018). Meta‐analysis and critical review on the efficacy and safety of alpha‐glucosidase inhibitors in Asian and non‐Asian populations. Journal of Diabetes Investigation, 9(2), 321–331. https://doi.org/10.1111/jdi.12711
  • Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1), 55–68. https://doi.org/10.1021/cc9800071
  • Halim, S. A., Jabeen, S., Khan, A., & Al-Harrasi, A. (2021). Rational design of novel inhibitors of α-glucosidase: An application of quantitative structure activity relationship and structure-based virtual screening. Pharmaceuticals, 14(5), 482. https://doi.org/10.3390/ph14050482
  • Halim, S. A., Lodhi, H. W., Waqas, M., Khalid, A., Abdalla, A. N., Khan, A., & Al-Harrasi, A. (2023). Targeting α-amylase enzyme through multi-fold structure-based virtual screening and molecular dynamic simulation. Journal of Biomolecular Structure & Dynamics, 1–14. https://doi.org/10.1080/07391102.2023.2227721
  • Halim, S. A., Waqas, M., Asim, A., Khan, M., Khan, A., & Al-Harrasi, A. (2022). Discovering novel inhibitors of P2Y12 receptor using structure-based virtual screening, molecular dynamics simulation and MMPBSA approaches. Computers in Biology and Medicine, 147, 105743. https://doi.org/10.1016/j.compbiomed.2022.105743
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Javaid, K., Saad, S. M., Rasheed, S., Moin, S. T., Syed, N., Fatima, I., Salar, U., Khan, K. M., Perveen, S., & Choudhary, M. (2015). I. 2-Arylquinazolin-4 (3H)-ones: A new class of α-glucosidase inhibitors. Bioorganic & Medicinal Chemistry, 23(23), 7417–7421. https://doi.org/10.1016/j.bmc.2015.10.038
  • Kajaria, D., Tripathi, J., Tripathi, Y. B., Tiwari, S., & Ranjana. (2013). In-vitro α amylase and glycosidase inhibitory effect of ethanolic extract of antiasthmatic drug—Shirishadi. Journal of Advanced Pharmaceutical Technology & research, 4 (4), 206–209. https://doi.org/10.4103/2231-4040.121415
  • Kausar, N., Ullah, S., Khan, M. A., Zafar, H., Choudhary, M I., Yousuf, S., & Atia-Tul-Wahab. (2021). Celebrex derivatives: Synthesis, α-glucosidase inhibition, crystal structures and molecular docking studies. Bioorganic chemistry, 106, 104499. https://doi.org/10.1016/j.bioorg.2020.104499
  • Kawamori, R., Inagaki, N., Araki, E., Watada, H., Hayashi, N., Horie, Y., Sarashina, A., Gong, Y., von Eynatten, M., Woerle, H. J., & Dugi, K. A. (2012). Linagliptin monotherapy provides superior glycaemic control versus placebo or voglibose with comparable safety in Japanese patients with type 2 diabetes: A randomized, placebo and active comparator‐controlled, double‐blind study. Diabetes, Obesity & Metabolism, 14(4), 348–357. https://doi.org/10.1111/j.1463-1326.2011.01545.x
  • Khan, S. A., Akhtar, M. J., Gogoi, U., Meenakshi, D. U., & Das, A. (2023). An overview of 1, 2, 3-triazole-containing hybrids and their potential anticholinesterase activities. Pharmaceuticals, 16(2), 179. https://doi.org/10.3390/ph16020179
  • Khan, I., Khan, A., Halim, S. A., Khan, M., Zaib, S., Al-Yahyaei, B. E. M., Al-Harrasi, A., & Ibrar, A. (2021). Utilization of the common functional groups in bioactive molecules: Exploring dual inhibitory potential and computational analysis of keto esters against α-glucosidase and carbonic anhydrase-II enzymes. International Journal of Biological Macromolecules, 167, 233–244. https://doi.org/10.1016/j.ijbiomac.2020.11.170
  • Khan, S. N., Shaheen, F., Aleem, U., Sheikh, S., Tamfu, A. N., Ashraf, S., Ul-Haq, Z., Ullah, S., Wahab, ATIA-TUL., Choudhary, M. I., & Jahan, H. (2022). Peptide conjugates of 18β-glycyrrhetinic acid as potent inhibitors of α-glucosidase and AGEs-induced oxidation. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 168, 106045. https://doi.org/10.1016/j.ejps.2021.106045
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Krautler, V., van Gunsteren, W. F., & Hunenberger, P. H. (2001). A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. Journal of Computational Chemistry, 22(5), 501–508. https://doi.org/10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V
  • Kumar, L., Jain, A., Lal, N., Sarswat, A., Jangir, S., Kumar, L., Singh, V., Shah, P., Jain, S. K., Maikhuri, J. P., Siddiqi, M. I., Gupta, G., & Sharma, V. L. (2012). Potentiating metronidazole scaffold against resistant trichomonas: Design, synthesis, biology and 3D–QSAR analysis. ACS Medicinal Chemistry Letters, 3(2), 83–87. https://doi.org/10.1021/ml200161t
  • Kumar, L., Lal, K., Yadav, P., Kumar, A., & Paul, A. K. (2020). Synthesis, characterization, α-glucosidase inhibition and molecular modeling studies of some pyrazoline-1H-1, 2, 3-triazole hybrids. Journal of Molecular Structure, 1216, 128253. https://doi.org/10.1016/j.molstruc.2020.128253
  • Lesieur, S., Charon, D., Lesieur, P., Ringard-Lefebvre, C., Muguet, V., Duchêne, D., & Wouessidjewe, D. (2000). Phase behavior of fully hydrated DMPC-amphiphilic cyclodextrin systems. Chemistry and Physics of Lipids, 106(2), 127–144. https://doi.org/10.1016/s0009-3084(00)00149-3
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Liu, X., Shi, D., Zhou, S., Liu, H., Liu, H., & Yao, X. (2018). Molecular dynamics simulations and novel drug discovery. Expert Opinion on Drug Discovery, 13(1), 23–37. https://doi.org/10.1080/17460441.2018.1403419
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Martínez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PloS One, 10(3), e0119264. https://doi.org/10.1371/journal.pone.0119264
  • Molecular Operating Environment (MOE). (2020). 2020.09; 1010 Sherbrooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7.
  • Molecular Operating Environment (MOE). (2022). Chemical Computing Group ULC: 1010 Sherbooke St. West, Suite 910, Montreal, QC, Canada.
  • Morris, G. M., & Lim-Wilby, M. (2008). Molecular docking. In A. Kukol (Ed.), Molecular modeling of proteins. Methods molecular biology (Vol. 443, pp. 365–382). Humana Press. https://doi.org/10.1007/978-1-59745-177-2_19
  • Muegge, I. (2003). Selection criteria for drug‐like compounds. Medicinal Research Reviews, 23(3), 302–321. https://doi.org/10.1002/med.10041
  • Norinder, U., & Bergström, C. A. (2006). Prediction of ADMET properties. ChemMedChem, 1(9), 920–937. https://doi.org/10.1002/cmdc.200600155
  • Origin(Pro). (2021).
  • Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T., & Kramer, P. B. (1987). Numerical recipes: The art of scientific computing. Physics Today, 40(10), 120–122. https://doi.org/10.1063/1.2820230
  • Leroux-Stewart, J., Rabasa-Lhoret, R., & Chiasson, J.-L. (2015). α-Glucosidase inhibitors. In R. A. DeFronzo, E. Ferrannini, P. Zimmet, & K. G. M. M. Alberti (Eds.), International textbook of diabetes mellitus (pp. 673–685). Hoboken, NJ: JohnWiley&Sons Publishing. https://doi.org/10.1002/9781118387658.ch45
  • Rafiq, K., Khan, M., Muhammed, N., Khan, A., Ur Rehman, N., Al-Yahyaei, B. E. M., Khiat, M., Halim, S. A., Shah, Z., Csuk, R., & Al-Harrasi, A. (2021). New amino acid clubbed Schiff bases inhibit carbonic anhydrase II, α-glucosidase, and urease enzymes: In silico and in vitro. Medicinal Chemistry Research, 30(3), 712–728. https://doi.org/10.1007/s00044-020-02696-0
  • Rami, M., Dubois, L., Parvathaneni, N.-K., Alterio, V., van Kuijk, S. J., Monti, S. M., Lambin, P., De Simone, G., Supuran, C. T., & Winum, J.-Y. (2013). Hypoxia-targeting carbonic anhydrase IX inhibitors by a new series of nitroimidazole-sulfonamides/sulfamides/sulfamates. Journal of Medicinal Chemistry, 56(21), 8512–8520. https://doi.org/10.1021/jm4009532
  • Rocha-Garduño, G., Hernández-Martínez, N. A., Colín-Lozano, B., Estrada-Soto, S., Hernández-Núñez, E., Prieto-Martínez, F. D., Medina-Franco, J. L., Chale-Dzul, J. B., Moo-Puc, R., & Navarrete-Vázquez, G. (2020). Metronidazole and secnidazole carbamates: Synthesis, antiprotozoal activity, and molecular dynamics studies. Molecules (Basel, Switzerland), 25(4), 793. https://doi.org/10.3390/molecules25040793
  • Roe, D. R., & Cheatham, T. E. 3rd. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Schmidt, J. S., Nyberg, N. T., & Staerk, D. (2014). Assessment of constituents in Allium by multivariate data analysis, high-resolution α-glucosidase inhibition assay and HPLC-SPE-NMR. Food Chemistry, 161, 192–198. https://doi.org/10.1016/j.foodchem.2014.03.062
  • Scholz, G., Pohl, I., Genschow, E., Klemm, M., & Spielmann, H. (1999). Embryotoxicity screening using embryonic stem cells in vitro: Correlation to in vivo teratogenicity. Cells, Tissues, Organs, 165(3–4), 203–211. https://doi.org/10.1159/000016700
  • Sharma, A., Dubey, R., Bhupal, R., Patel, P., Verma, S. K., Kaya, S., & Asati, V. (2023). An insight on medicinal attributes of 1, 2, 3‐and 1, 2, 4‐triazole derivatives as alpha-amylase and alpha-glucosidase inhibitors. Molecular Diversity, 1–30. https://doi.org/10.1007/s11030-023-10728-1
  • Shaw, J. E., Sicree, R. A., & Zimmet, P. Z. (2010). Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Research and Clinical Practice, 87(1), 4–14. https://doi.org/10.1016/j.diabres.2009.10.007
  • Siddiqui, H., Baheej, M., Ullah, S., Rizvi, F., Iqbal, S., Haniffa, H. M., Wahab, A-T., & Choudhary, M. I. (2021). Synthesis of 1, 2, 3, triazole modified analogues of hydrochlorothiazide via click chemistry approach and in-vitro α-glucosidase enzyme inhibition studies. Molecular Diversity, 26(4), 2049–2067. https://doi.org/10.1007/s11030-021-10314-3
  • Sindhikara, D. J., Kim, S., Voter, A. F., & Roitberg, A. E. (2009). Bad seeds sprout perilous dynamics: Stochastic thermostat induced trajectory synchronization in biomolecules. Journal of Chemical Theory and Computation, 5(6), 1624–1631. https://doi.org/10.1021/ct800573m
  • Singh, N., Pandey, S., & Tripathi, R. P. (2010). Regioselective [3 + 2] cycloaddition of chalcones with a sugar azide: Easy access to 1-(5-deoxy-D-xylofuranos-5-yl)-4, 5-disubstituted-1H-1, 2, 3-triazoles. Carbohydrate Research, 345(12), 1641–1648. https://doi.org/10.1016/j.carres.2010.04.019
  • Society, C. D. (2014). Chinese guideline for type 2 diabetes prevention (2013). Chinese Journal of Diabetes, 22(08), 2–42.
  • Thirumurugan, P., Matosiuk, D., & Jozwiak, K. (2013). Click chemistry for drug development and diverse chemical–biology applications. Chemical Reviews, 113(7), 4905–4979. https://doi.org/10.1021/cr200409f
  • Tian, C., Kasavajhala, K., Belfon, K. A. A., Raguette, L., Huang, H., Migues, A. N., Bickel, J., Wang, Y., Pincay, J., Wu, Q., & Simmerling, C. (2019). ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. Journal of Chemical Theory and Computation, 16(1), 528–552. https://doi.org/10.1021/acs.jctc.9b00591
  • Tseng, Y.-H., Tsan, Y.-T., Chan, W.-C., Sheu, W. H.-H., & Chen, P.-C. (2015). Use of an α-glucosidase inhibitor and the risk of colorectal cancer in patients with diabetes: A nationwide, population-based cohort study. Diabetes Care, 38(11), 2068–2074. https://doi.org/10.2337/dc15-0563
  • Tundis, R., Loizzo, M., & Menichini, F. (2010). Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini Reviews in Medicinal Chemistry, 10(4), 315–331. https://doi.org/10.2174/138955710791331007
  • Ullah, S., Khan, M. A., Zafar, H., Younus, M., Choudhary, M. I., Basha, F. Z., Umm-E-Farwa, & Atia-Tul-Wahab. (2021). Dibenzazepine-linked isoxazoles: New and potent class of α-glucosidase inhibitors. Bioorganic & Medicinal Chemistry letters, 40, 127979. https://doi.org/10.1016/j.bmcl.2021.127979
  • Ullah, S., Mirza, S., Salar, U., Hussain, S., Javaid, K., Khan, K. M., Khalil, R., Ul-Haq, Z., Perveen, S., Choudhary, M. I., & Atia-Tul-Wahab. (2020). 2-mercapto benzothiazole derivatives: As potential leads for the diabetic management. Medicinal Chemistry (Shariqah (United Arab Emirates)), 16 (6), 826–840. https://doi.org/10.2174/1573406415666190612153150
  • Ullah, S., Waqas, M., Halim, S. A., Khan, I., Khalid, A., Abdalla, A. N., Makeen, H. A., Ibrar, A., Khan, A., & Al-Harrasi, A. (2023). Triazolothiadiazoles and triazolothiadiazines as potent α-glucosidase inhibitors: Mechanistic insights from kinetics studies, molecular docking and dynamics simulations. International Journal of Biological Macromolecules, 250, 126227. https://doi.org/10.1016/j.ijbiomac.2023.126227
  • Upadhyay, A., Chandrakar, P., Gupta, S., Parmar, N., Singh, S. K., Rashid, M., Kushwaha, P., Wahajuddin, M., Sashidhara, K. V., & Kar, S. (2019). Synthesis, biological evaluation, structure–activity relationship, and mechanism of action studies of quinoline–metronidazole derivatives against experimental visceral leishmaniasis. Journal of Medicinal Chemistry, 62(11), 5655–5671. https://doi.org/10.1021/acs.jmedchem.9b00628
  • Ur Rehman, N., Rafiq, K., Khan, A., Ahsan Halim, S., Ali, L., Al-Saady, N., Hilal Al-Balushi, A., Al-Busaidi, H. K., & Al-Harrasi, A. (2019). α-Glucosidase inhibition and molecular docking studies of natural brominated metabolites from marine macro brown alga Dictyopteris hoytii. Marine Drugs, 17(12), 666. https://doi.org/10.3390/md17120666
  • Valdez, C. A., Tripp, J. C., Miyamoto, Y., Kalisiak, J., Hruz, P., Andersen, Y. S., Brown, S. E., Kangas, K., Arzu, L. V., Davids, B. J., Gillin, F. D., Upcroft, J. A., Upcroft, P., Fokin, V. V., Smith, D. K., Sharpless, K. B., & Eckmann, L. (2009). Synthesis and electrochemistry of 2-ethenyl and 2-ethanyl derivatives of 5-nitroimidazole and antimicrobial activity against Giardia lamblia. Journal of Medicinal Chemistry, 52(13), 4038–4053. https://doi.org/10.1021/jm900356n
  • Valent, F. (2015). Diabetes mellitus and cancer of the digestive organs: An Italian population-based cohort study. Journal of Diabetes and Its Complications, 29(8), 1056–1061. https://doi.org/10.1016/j.jdiacomp.2015.07.017
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Wali, S., Ullah, S., Khan, M. A., Hussain, S., Shaikh, M., Choudhary, M. I., Atia-Tul-Wahab, & Atta-Ur-Rahman. (2022). Synthesis of new clioquinol derivatives as potent α-glucosidase inhibitors; molecular docking, kinetic and structure–activity relationship studies. Bioorganic chemistry, 119, 105506. https://doi.org/10.1016/j.bioorg.2021.105506
  • Wang, W., Donini, O., Reyes, C. M., & Kollman, P. A. (2001). Biomolecular simulations: Recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annual Review of Biophysics and Biomolecular Structure, 30(1), 211–243. https://doi.org/10.1146/annurev.biophys.30.1.211
  • Wang, J., Hou, T., & Xu, X. (2006). Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Current Computer Aided-Drug Design, 2(3), 287–306. https://doi.org/10.2174/157340906778226454
  • Wang, B., & Merz, K. M. (2006). A fast QM/MM (quantum mechanical/molecular mechanical) approach to calculate nuclear magnetic resonance chemical shifts for macromolecules. Journal of Chemical Theory and Computation, 2(1), 209–215. https://doi.org/10.1021/ct050212s
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2001). Antechamber: An accessory software package for molecular mechanical calculations. Journal of the American Chemical Society, 222(1), U403.
  • Waqas, M., Ullah, S., Halim, S. A., Rehman, N. U., Ali, A., Jan, A., Muhsinah, A. B., Khan, A., & Al-Harrasi, A. (2023). Targeting papain-like protease by natural products as novel therapeutic potential SARS-CoV-2. International Journal of Biological Macromolecules, 258(Pt 1), 128812. https://doi.org/10.1016/j.ijbiomac.2023.128812
  • Wardman, P. (2018). Nitroimidazoles as hypoxic cell radiosensitizers and hypoxia probes: Misonidazole, myths and mistakes. British Journal of Radiology, 92(1093), 20170915. https://doi.org/10.1259/bjr.20170915
  • Weiser, J., Shenkin, P. S., & Still, W. C. (1999). Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). Journal of Computational Chemistry, 20(2), 217–230. https://doi.org/10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A
  • Wu, L., Zhu, J., Prokop, L. J., & Murad, M. H. (2015). Pharmacologic therapy of diabetes and overall cancer risk and mortality: A meta-analysis of 265 studies. Scientific Reports, 5(1), 10147. https://doi.org/10.1038/srep10147
  • Xu, S., Held, I., Kempf, B., Mayr, H., Steglich, W., & Zipse, H. (2005). The DMAP‐catalyzed acetylation of alcohols—A mechanistic study (DMAP= 4‐(Dimethylamino) pyridine). Chemistry (Weinheim an Der Bergstrasse, Germany), 11(16), 4751–4757. https://doi.org/10.1002/chem.200500398
  • Yadav, J., Thrimurtulu, N., Gayathri, K. U., Reddy, B. S., & Prasad, A. (2008). The stereoselective total synthesis of xestodecalactone C and epi-sporostatin via the Prins cyclisation. Tetrahedron Letters, 49(47), 6617–6620. https://doi.org/10.1016/j.tetlet.2008.08.096
  • Yang, T., Wu, J. C., Yan, C., Wang, Y., Luo, R., Gonzales, M. B., Dalby, K. N., & Ren, P. (2011). Virtual screening using molecular simulations. Proteins, 79(6), 1940–1951. https://doi.org/10.1002/prot.23018
  • Zala, A. R., Naik, H. N., Ahmad, I., Patel, H., Jauhari, S., & Kumari, P. (2023). Design and synthesis of novel 1, 2, 3-triazole linked hybrids: Molecular docking, MD simulation, and their antidiabetic efficacy as α-amylase inhibitors. Journal of Molecular Structure, 1285, 135493. https://doi.org/10.1016/j.molstruc.2023.135493
  • Zhang, Z., Luo, A., Zhong, K., Huang, Y., Gao, Y., Zhang, J., Gao, H., Xu, Z., & Gao, X. (2013). α-Glucosidase inhibitory activity by the flower buds of Lonicera japonica Thunb. Journal of Functional Foods, 5(3), 1253–1259. https://doi.org/10.1016/j.jff.2013.04.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.