91
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Predicting anti-COVID-19 potential: in silico analysis of Mauritine compound from Ziziphus-spina christi as a promising papain-like protease (PLpro) inhibitor

ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 28 Nov 2023, Accepted 19 Feb 2024, Published online: 26 Mar 2024

References

  • Abraham, M., Hess, B., D van der, S., & Lindahl, E. (2015). The GROMACS development team, GROMACS user manual. Version, 5(0.7).
  • Adam IA, Irshad R, Atia-tul-Wahab, Omoboyowa DA, Choudhary MI, Wang Y. Two new 5(14)-membered type cyclopeptide alkaloids from root bark of Ziziphus spina-christi (L.) Desf.Natural Product Research. 2023;37(15, 2473–2479). https://doi.org/10.1080/14786419.2022.2050227
  • Anand, K. B., Karade, S., Sen, S., & Gupta, R. M. (2020). SARS-CoV-2: Camazotz’s curse. Medical Journal, Armed Forces India, 76(2), 136–141. https://doi.org/10.1016/j.mjafi.2020.04.008
  • Aragones, J. L., Noya, E. G., Valeriani, C., & Vega, C. (2013). Free energy calculations for molecular solids using GROMACS. The Journal of Chemical Physics, 139(3), 034104. https://doi.org/10.1063/1.4812362
  • Armstrong, L. A., Lange, S. M., Dee Cesare, V., Matthews, S. P., Nirujogi, R. S., Cole, I., Hope, A., Cunningham, F., Toth, R., Mukherjee, R., Bojkova, D., Gruber, F., Gray, D., Wyatt, P. G., Cinatl, J., Dikic, I., Davies, P., & Kulathu, Y. (2021). Biochemical characterization of protease activity of Nsp3 from SARS-CoV-2 and its inhibition by nanobodies. PloS One, 16(7), e0253364. https://doi.org/10.1371/journal.pone.0253364
  • Arya, R., Prashar, V., & Kumar, M. (2022). Evaluating stability and activity of SARS-CoV-2 PLpro for high-throughput screening of inhibitors. Molecular Biotechnology, 64(1), 1–8. https://doi.org/10.1007/s12033-021-00383-y
  • Az-Zahra, F., Afidika, J., Diamantha, S. D. A., Rahmani, A. E., Fatimah, S., Aulifa, D. L., Elaine, A. A., & Sitinjak, B. D. P. (2022). Indonesian journal of biological pharmacy in silico study of betel leaves compound (Piper betle L.) as acetylcholinesterase (AChE) enzyme inhibitor in Alzheimer Disease. Indonesian Journal of Biological Pharmacy, 2(2), 44. https://doi.org/10.24198/ijbp.v2i2.40462
  • Bhowmick, S., AlFaris, N. A., Zaidan ALTamimi, J., ALOthman, Z. A., Patil, P. C., Aldayel, T. S., Wabaidur, S. M., & Saha, A. (2022). Identification of bio-active food compounds as potential SARS-CoV-2 PLpro inhibitors-modulators via negative image-based screening and computational simulations. Computers in Biology and Medicine, 145, 105474. https://doi.org/10.1016/j.compbiomed.2022.105474
  • BIOVIA. (2017). Dassault Systèmes BIOVIA, discovery studio modeling environment, release 2017. San Diego, CA: Dassault Systèmes.
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Djajadisastra, J., Purnama, H. D., & Yanuar, A. (2017). In silico binding interaction study of mefenamic acid and piroxicam on human albumin. International Journal of Applied Pharmaceutics, 9, 102. https://doi.org/10.22159/ijap.2017.v9s1.56_62
  • Fakih, T. M., Putri, N. W. R. P., Marillia, V., Ramadhan, D. S. F., & Darusman, F. (2022). Identifikasi Aktivitas Biologis, Prediksi Toksisitas, dan Molecular Docking Senyawa Jubanine dari Tanaman Bidara Arab sebagai Kandidat Antivirus SARS-CoV-2. J Ris Kim, 13(1) https://doi.org/10.25077/jrk.v13i1.437
  • Farooq Wali, A., Ramakrishna Pillai, J., Beigh, S., Mushtaq, A., Arafah, A., Rehman, M. U., Jabnoun, S., Razmpoor, M., Al Dibsawi, A., Alshehri Resource, S., Ghoneim, M. M., & Sarim Imam, S. (2022). Ethnopharmacological uses, phytochemistry, pharmacological properties and clinical trials of Ziziphus Spina-Christi: A comprehensive review. Saudi Pharmaceutical Journal, https://doi.org/10.1016/j.jsps.2022.05.001
  • Forli, W., Halliday, S., Belew, R., & Olson, A. (2012). AutoDock Version 4.2. Citeseer.
  • Gao, X., Qin, B., Chen, P., Zhu, K., Hou, P., Wojdyla, J. A., Wang, M., & Cui, S. (2021). Crystal structure of SARS-CoV-2 papain-like protease. Acta Pharmaceutica Sinica. B, 11(1), 237–245. https://doi.org/10.1016/j.apsb.2020.08.014
  • Giannozzi, P., Baseggio, O., Bonfà, P., Brunato, D., Car, R., Carnimeo, I., Cavazzoni, C., de Gironcoli, S., Delugas, P., Ferrari Ruffino, F., Ferretti, A., Marzari, N., Timrov, I., Urru, A., & Baroni, S. (2020). Quantum ESPRESSO toward the exascale. The Journal of Chemical Physics, 152(15), 154105. https://doi.org/10.1063/5.0005082
  • Guo, Y.-R., Cao, Q.-D., Hong, Z.-S., Tan, Y.-Y., Chen, S.-D., Jin, H.-J., Tan, K.-S., Wang, D.-Y., & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak: A n update on the status. Military Medical Research, 7(1). https://doi.org/10.1186/s40779-020-00240-0
  • Hikmawati, D., Fakih, T. M., Sutedja, E., Dwiyana, R. F., Atik, N., & Ramadhan, D. S. F. (2022). Pharmacophore-guided virtual screening and dynamic simulation of Kallikrein-5 inhibitor: Discovery of potential molecules for rosacea therapy. Informatics in Medicine Unlocked, 28, 100844. https://doi.org/10.1016/j.imu.2022.100844
  • Karami, T. K., Hailu, S., Feng, S., Graham, R., & Gukasyan, H. J. (2022). Eyes on Lipinski’s rule of five: A new “rule of thumb” for physicochemical design space of ophthalmic drugs. Journal of Ocular Pharmacology and Therapeutics: The Official Journal of the Association for Ocular Pharmacology and Therapeutics, 38(1), 43–55. https://doi.org/10.1089/jop.2021.0069
  • Khan, R. J., Jha, R. K., Singh, E., Jain, M., Amera, G. M., Singh, R. P., et al. (2022). Identification of promising antiviral drug candidates against non-structural protein 15 (NSP15) from SARS-CoV-2: An in silico assisted drug-repurposing study. Journal of Biomolecular Structure and Dynamics. 40(1). https://doi.org/10.1080/07391102.2020.1814870
  • Kidaka, T., Lokupathirage, S. M. W., Muthusinghe, B. D. S., Pongombo, B. L., Wastika, C. E., Wei, Z., et al. (2020). Review on counter measures to coronavirus disease 2019 (COVID-19) pandemic, May 2020. Japanese Journal of Veterinary Research. 68(3). https://doi.org/10.14943/jjvr.68.3.133
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2023). PubChem 2023 update. Nucleic Acids Research, 51(D1), D1373–D1380. https://doi.org/10.1093/nar/gkac956
  • Kumar, N., Kaur, K., & Bedi, P. M. S. (2023). Hybridization of molecular docking studies with machine learning based QSAR model for prediction of xanthine oxidase activity. Computational and Theoretical Chemistry. 1227, 114262. https://doi.org/10.1016/j.comptc.2023.114262
  • Kumar, N., Singh, A., Gulati, H. K., Bhagat, K., Kaur, K., Kaur, J., Dudhal, S., Duggal, A., Gulati, P., Singh, H., Singh, J. V., & Bedi, P. M. S. (2021). Phytoconstituents from ten natural herbs as potent inhibitors of main protease enzyme of SARS-COV-2: In silico study. Phytomedicine plus: International Journal of Phytotherapy and Phytopharmacology, 1(4), 100083. https://doi.org/10.1016/j.phyplu.2021.100083
  • Kumar, N., Singh, J. V., Bhagat, K., Gulati, H. K., Sharma, A., Rani, A., Duggal, A., Gulati, P., Singh, H., Bedi, P. M. S., & Kaur, S. (2022). Discovery of potent inhibitors for Mpro enzyme of SARS-COV2 by multi-stage in-silico screening of Alkannin/shikonin. Natural Product Research, 36(18), 4804–4808. https://doi.org/10.1080/14786419.2021.2013212
  • Li, H., Chen, C., Hu, F., Wang, J., Zhao, Q., Gale, R. P., & Liang, Y. (2020). Impact of corticosteroid therapy on outcomes of persons with SARS-CoV-2, SARS-CoV, or MERS-CoV infection: A systematic review and meta-analysis. Leukemia, 34(6), 1503–1511. https://doi.org/10.1038/s41375-020-0848-3
  • Liu, Q., Lu, P., Shen, Y., Li, C., Wang, J., Zhu, L., Lu, W., & Martinez, L. (2021). Collateral impact of the coronavirus disease 2019 (COVID-19) pandemic on tuberculosis control in Jiangsu Province, China. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 73(3), 542–544. https://doi.org/10.1093/cid/ciaa1289
  • Lohidakshan, K., Rajan, M., Ganesh, A., Paul, M., & Jerin, J. (2018). Pass and Swiss ADME collaborated in silico docking approach to the synthesis of certain pyrazoline spacer compounds for dihydrofolate reductase inhibition and antimalarial activity. Bangladesh Journal of Pharmacology, 13(1), 23. https://doi.org/10.3329/bjp.v13i1.33625
  • Mahtarin, R., Islam, S., Islam, M. J., Ullah, M. O., Ali, M. A., & Halim, M. A. (2022). Structure and dynamics of membrane protein in SARS-CoV-2. Journal of Biomolecular Structure and Dynamics. 40(10), 4725–4738. https://doi.org/10.1080/07391102.2020.1861983
  • Mohamed, K., Rzymski, P., Islam, M. S., Makuku, R., Mushtaq, A., Khan, A., Ivanovska, M., Makka, S. A., Hashem, F., Marquez, L., Cseprekal, O., Filgueiras, I. S., Fonseca, D. L. M., Mickael, E., Ling, I., Arero, A. G., Cuschieri, S., Minakova, K., Rodríguez-Román, E., … Rezaei, N. (2022). COVID-19 vaccinations: The unknowns, challenges, and hopes. Journal of Medical Virology, 94(4), 1336–1349. https://doi.org/10.1002/jmv.27487
  • Moreno-Eutimio, M. A., López-Macías, C., & Pastelin-Palacios, R. (2020). Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes. Microbes and Infection, 22(4-5), 226–229. https://doi.org/10.1016/j.micinf.2020.04.009
  • Muchtaridi, M., Triwahyuningtyas, D., Muhammad Fakih, T., Megantara, S., & Choi, S. B. (2023). Mechanistic insight of α-mangostin encapsulation in 2-hydroxypropyl-β-cyclodextrin for solubility enhancement. Journal of Biomolecular Structure & Dynamics, 1–10. https://doi.org/10.1080/07391102.2023.2214237
  • Mulyani, S., Adriani, M., & Wirjatmadi, B. (2021). Antibacterial activity of extract ethanol bidara leaves (Ziziphus spina-christi l) on enteropathogenic coli. Indian Journal of Forensic Medicine & Toxicology, 15(1). https://doi.org/10.37506/ijfmt.v15i1.13638
  • Ramadhan, D. S. F., Siharis, F., Abdurrahman, S., Isrul, M., & Fakih, T. M. (2022). In silico analysis of marine natural product from sponge (Clathria Sp.) for their activity as inhibitor of SARS-CoV-2 Main Protease. Journal of Biomolecular Structure and Dynamics. 40(22), 11526–11532. https://doi.org/10.1080/07391102.2021.1959405
  • Ren, J., Yuan, X., Li, J., Lin, S., Yang, B., Chen, C., Zhao, J., Zheng, W., Liao, H., Yang, Z., & Qu, Z. (2020). Assessing the performance of the g_mmpbsa tools to simulate the inhibition of oseltamivir to influenza virus neuraminidase by molecular mechanics Poisson–Boltzmann surface area methods. Journal of the Chinese Chemical Society, 67(1), 46–53. https://doi.org/10.1002/jccs.201900148
  • Sakna, S. T., Mocan, A., Sultani, H. N., El-Fiky, N. M., Wessjohann, L. A., & Farag, M. A. (2019). Metabolites profiling of Ziziphus leaf taxa via UHPLC/PDA/ESI-MS in relation to their biological activities. Food Chemistry, 293, 233–246. https://doi.org/10.1016/j.foodchem.2019.04.097
  • Shen, C.-H., Tie, Y., Yu, X., Wang, Y.-F., Kovalevsky, A. Y., Harrison, R. W., & Weber, I. T. (2012). Capturing the reaction pathway in near-atomic-resolution crystal structures of HIV-1 protease. Biochemistry, 51(39), 7726–7732. https://doi.org/10.1021/bi3008092
  • Smith, M. D., Rao, J. S., Segelken, E., & Cruz, L. (2015). Force-field induced bias in the structure of Aβ21-30: A comparison of OPLS, AMBER, CHARMM, and GROMOS force fields. Journal of Chemical Information and Modeling, 55(12), 2587–2595. https://doi.org/10.1021/acs.jcim.5b00308
  • Sokolinskaya, E. L., Putlyaeva, L. V., Polinovskaya, V. S., & Lukyanov, K. A. (2022). Genetically encoded fluorescent sensors for SARS-CoV-2 papain-like protease PLpro. International Journal of Molecular Sciences, 23(14), 7826. https://doi.org/10.3390/ijms23147826
  • Sousa Da Silva, A. W., & Vranken, W. F. (2012). ACPYPE: AnteChamber PYthon parser interfacE. BMC Research Notes, 5(1). https://doi.org/10.1186/1756-0500-5-367
  • Taghipour, M. T., Nameni, R., Taghipour, M., & Ghorat, F. (2020). Phytochemical analysis and antimicrobial activity of Ziziphus spina-christi and Tamarix aphylla Leaves’ extracts as effective treatment for coronavirus disease 2019 (COVID-19). Thrita, 9(2). https://doi.org/10.5812/thrita.107776
  • Tallei, Trina Ekawati, Yelnetty, Afriza, Idroes, Rinaldi, Kusumawaty, Diah, Emran, Talha Bin, Yesiloglu, Talha Zahid, Sippl, Wolfgang, Mahmud, Shafi, Alqahtani, Taha, Alqahtani, Ali M, Asiri, Saeed, Rahmatullah, Mohammed, Jahan, Rownak, Khan, Md Arif, Celik, Ismail, Fatimawali  ,. An analysis based on molecular docking and molecular dynamics simulation study of Bromelain as anti-SARS-CoV-2 variants. Frontiers in Pharmacology, 717757. 2021;12. https://doi.org/10.3389/fphar.2021.717757
  • Tsai, Y. C., Chen, W. Y., & Chiu, C. C (2023). Molecular effects of site-specific phosphate-methylated primer on the structure and motions of Taq DNA polymerase. Computational and Structural Biotechnology Journal. 21. https://doi.org/10.1016/j.csbj.2023.02.043
  • Tuenter, E., Foubert, K., Staerk, D., Apers, S., & Pieters, L. (2017). Isolation and structure elucidation of cyclopeptide alkaloids from Ziziphus nummularia and Ziziphus spina-christi by HPLC-DAD-MS and HPLC-PDA-(HRMS)-SPE-NMR. Phytochemistry, 138, 163–169. https://doi.org/10.1016/j.phytochem.2017.02.029
  • Velayati, A., Farnia, P., Besharati, S., Farnia, P., & Ghanavi, J. (2020). The importance of genomic changes of SARS-CoV-2 and its comparison with Iranian-reported COVID-19 sequencing; whether each country has to design its treatment and vaccine production. Biomedical and Biotechnology Research Journal, 4. https://doi.org/10.4103/bbrj.bbrj_122_20
  • Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281–292.e6. https://doi.org/10.1016/j.cell.2020.02.058
  • Wang, C., Greene, D., Xiao, L., Qi, R., & Luo, R. (2017). Recent developments and applications of the MMPBSA method. Frontiers in Molecular Biosciences, 4, 87. https://doi.org/10.3389/fmolb.2017.00087
  • Yang, L. L., & Yang, T. (2020). Pulmonary rehabilitation for patients with coronavirus disease 2019 (COVID-19). Chronic Diseases and Translational Medicine, 6(2), 79–86. https://doi.org/10.1016/j.cdtm.2020.05.002
  • Yang, X., Chen, X., Bian, G., Tu, J., Xing, Y., Wang, Y., & Chen, Z. (2014). Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease. Journal of General Virology, 95(3), 614–626. https://doi.org/10.1099/vir.0.059014-0
  • Yeni, Y., Supandi, S., & Merdekawati, F. (2018). In silico toxicity prediction of 1-phenyl-1-(quinazolin-4-yl) ethanol compounds by using Toxtree, pkCSM and preADMET. Pharmaciana, 8(2), 216. https://doi.org/10.12928/pharmaciana.v8i2.9508

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.