79
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Zingiberaceae-derived phytomolecules inhibit Japanese encephalitis virus RNA dependent RNA polymerase: a molecular dynamics study

, , , , , , , , & show all
Received 22 Oct 2023, Accepted 19 Feb 2024, Published online: 14 Mar 2024

References

  • Julander, J. G., Demarest, J. F., Taylor, R., Gowen, B. B., Walling, D. M., Mathis, A., & Babu, Y. S. (2021). An update on the progress of galidesivir (BCX4430), a broad-spectrum antiviral. Antiviral Research, 195, 105180. https://doi.org/10.1016/j.antiviral.2021.105180
  • Bajrai, L. H., Alandijany, T. A., Alsaady, I., El-Daly, M. M., Tolah, A. M., Khateb, A. M., Dubey, A., Dwivedi, V. D., & Azhar, E. I. (2023). Assessing the inhibitory potential of anti-dengue compounds against Japanese encephalitis virus RNA dependent RNA polymerase: An in silico study. Journal of Biomolecular Structure & Dynamics, 0, 1–17. https://doi.org/10.1080/07391102.2023.2265489
  • Balaji, A. P. B., Bhuvaneswari, S., Raj, L. S., Bupesh, G., Meenakshisundaram, K. K., & Saravanan, K. M. (2022). A review on the potential species of the zingiberaceae family with anti-viral efficacy towards enveloped viruses. Journal of Pure and Applied Microbiology, 16(2), 796–813. https://doi.org/10.22207/JPAM.16.2.35
  • Bharadwaj, S., Dubey, A., Yadava, U., Mishra, S. K., Kang, S. G., & Dwivedi, V. D. (2021). Exploration of natural compounds with anti-SARS-CoV-2 activity via inhibition of SARS-CoV-2 Mpro. Briefings in Bioinformatics, 22(2), 1361–1377. https://doi.org/10.1093/bib/bbaa382
  • Bhimaneni, S. P., & Kumar, A. (2020). Abscisic acid, a plant hormone, could be a promising candidate as an anti-japanese encephalitis virus (JEV) agent. Anti-Infective Agents, 18(4), 326–331. https://doi.org/10.2174/2211352518666200108092127
  • Bhimaneni, S., & Kumar, A. (2022). Abscisic acid and aloe-emodin against NS2B-NS3A protease of Japanese encephalitis virus. Environmental Science and Pollution Research International, 29(6), 8759–8766. https://doi.org/10.1007/s11356-021-16229-8
  • Bhosale, S., & Kumar, A. (2021). Screening of phytoconstituents of Andrographis paniculata against various targets of Japanese encephalitis virus: An in-silico and in-vitro target-based approach. Current Research in Pharmacology and Drug Discovery, 2, 100043. https://doi.org/10.1016/j.crphar.2021.100043
  • Blanes-Mira, C., Fernández-Aguado, P., de Andrés-López, J., Fernández-Carvajal, A., Ferrer-Montiel, A., & Fernández-Ballester, G. (2022). Comprehensive survey of consensus docking for high-throughput virtual screening. Molecules (Basel, Switzerland), 28(1), 175. https://doi.org/10.3390/molecules28010175
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., & Salmon, J. K. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters (pp. 84-es).
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Das, S., Kolhe, R., Milton, A. A. P., & Ghatak, S. (2020). Japanese encephalitis virus. In Y. S. Malik, R. K. Singh, & K. Dhama (Eds.), Animal-origin viral zoonoses. Livestock Diseases and Management (pp. 255–289). Singapore: Springer. https://doi.org/10.1007/978-981-15-2651-0_12
  • De Clercq, E. (2014). Current race in the development of DAAs (direct-acting antivirals) against HCV. Biochemical Pharmacology, 89(4), 441–452. https://doi.org/10.1016/j.bcp.2014.04.005
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40, 82–92.
  • Dwivedi, V. D., Singh, A., El-Kafraway, S. A., Alandijany, T. A., Faizo, A. A., Bajrai, L. H., Kamal, M. A., & Azhar, E. I. (2021). Mechanistic insights into the Japanese encephalitis virus RNA dependent RNA polymerase protein inhibition by bioflavonoids from Azadirachta indica. Scientific Reports, 11(1), 18125. https://doi.org/10.1038/s41598-021-96917-0
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  • Eyer, L., Nencka, R., de Clercq, E., Seley-Radtke, K., & Růžek, D. (2018). Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antiviral Chemistry & Chemotherapy, 26, 2040206618761299. https://doi.org/10.1177/2040206618761299
  • Ghosh, S. K., & Ghosh, C. (2020). Innovations in vector-borne disease control in India. In Public health in developing countries-challenges and opportunities. IntechOpen.
  • Grant, B. J., Rodrigues, A. P. C., ElSawy, K. M., McCammon, J. A., & Caves, L. S. D. (2006). Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics (Oxford, England), 22(21), 2695–2696. https://doi.org/10.1093/bioinformatics/btl461
  • Gupta, P. (2014). Computer aided drug design and discovery–an economical approach to drug discovery industry. Austin Journal of Biotechnology & Bioengineering, 1(4), 1–2.
  • Hills, S. L., Griggs, A. C., & Fischer, M. (2010). Japanese encephalitis in travelers from non-endemic countries, 1973–2008. The American Journal of Tropical Medicine and Hygiene, 82(5), 930–936. https://doi.org/10.4269/ajtmh.2010.09-0676
  • Japanese Encephalitis (JE) reported cases and incidence. Accessed 11 Oct (2023). https://immunizationdata.who.int/pages/incidence/JAPENC.html?CODE=Global&YEAR=.
  • Kagami, L. P., das Neves, G. M., Timmers, L. F. S. M., Caceres, R. A., & Eifler-Lima, V. L. (2020). Geo-Measures: A PyMOL plugin for protein structure ensembles analysis. Computational Biology and Chemistry, 87, 107322. https://doi.org/10.1016/j.compbiolchem.2020.107322
  • Kirchmair, J., Distinto, S., Liedl, K. R., Markt, P., Rollinger, J. M., Schuster, D., Spitzer, G. M., & Wolber, G. (2011). Development of anti-viral agents using molecular modeling and virtual screening techniques. Infectious Disorders Drug Targets, 11(1), 64–93. https://doi.org/10.2174/187152611794407782
  • Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. Nature Reviews. Drug Discovery, 3(11), 935–949. https://doi.org/10.1038/nrd1549
  • Kumar, K. M. P., Asish, G. R., Sabu, M., & Balachandran, I. (2013). Significance of gingers (Zingiberaceae) in Indian system of medicine-Ayurveda: An overview. Ancient Science of Life, 32(4), 253–261. https://doi.org/10.4103/0257-7941.131989
  • Labbé, C. M., Rey, J., Lagorce, D., Vavruša, M., Becot, J., Sperandio, O., Villoutreix, B. O., Tufféry, P., & Miteva, M. A. (2015). MTiOpenScreen: A web server for structure-based virtual screening. Nucleic Acids Research, 43(W1), W448–W454. https://doi.org/10.1093/nar/gkv306
  • Li, Q., & Kang, C. (2020). Mechanisms of action for small molecules revealed by structural biology in drug discovery. International Journal of Molecular Sciences, 21(15), 5262. https://doi.org/10.3390/ijms21155262
  • Navyashree, V., Kant, K., & Kumar, A. (2021). Natural chemical entities from Arisaema genus might be a promising break-through against Japanese encephalitis virus infection: A molecular docking and dynamics approach. Journal of Biomolecular Structure & Dynamics, 39(4), 1404–1416. https://doi.org/10.1080/07391102.2020.1731603
  • Ozkur, M., Benlier, N., Takan, I., Vasileiou, C., Georgakilas, A. G., Pavlopoulou, A., Cetin, Z., & Saygili, E. I. (2022). Ginger for healthy ageing: A systematic review on current evidence of its antioxidant, anti-inflammatory, and anticancer properties. Oxidative Medicine and Cellular Longevity, 2022, 4748447–4748416. https://doi.org/10.1155/2022/4748447
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Shaker, B., Ahmad, S., Lee, J., Jung, C., & Na, D. (2021). In silico methods and tools for drug discovery. Computers in Biology and Medicine, 137, 104851. https://doi.org/10.1016/j.compbiomed.2021.104851
  • Sharma, P., Sharma, N., Kumar, A., et al. (2023). Chapter 13 - Natural products in Japanese encephalitis. In: Chauhan NS, Chauhan DN (eds.), Natural products in vector-borne disease management (pp. 309–334). Academic Press.
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519. https://doi.org/10.1021/ct900587b
  • Solomon, T., Dung, N. M., Kneen, R., Thao, L. T. T., Gainsborough, M., Nisalak, A., Day, N. P. J., Kirkham, F. J., Vaughn, D. W., Smith, S., & White, N. J. (2002). Seizures and raised intracranial pressure in Vietnamese patients with Japanese encephalitis. Brain: A Journal of Neurology, 125(Pt 5), 1084–1093. https://doi.org/10.1093/brain/awf116
  • Solomon, T., Ni, H., Beasley, D. W. C., Ekkelenkamp, M., Cardosa, M. J., & Barrett, A. D. T. (2003). Origin and evolution of Japanese encephalitis virus in southeast Asia. Journal of Virology, 77(5), 3091–3098. https://doi.org/10.1128/jvi.77.5.3091-3098.2003
  • Venkataraman, S., Prasad, B. V., & Selvarajan, R. (2018). RNA dependent RNA polymerases: Insights from structure, function and evolution. Viruses, 10(2), 76. https://doi.org/10.3390/v10020076
  • Vivek-Ananth, R. P., Mohanraj, K., Sahoo, A. K., & Samal, A. (2023). IMPPAT 2.0: An enhanced and expanded phytochemical atlas of Indian medicinal plants. ACS Omega, 8(9), 8827–8845. https://doi.org/10.1021/acsomega.3c00156
  • Wathieu, H., T Issa, N., W Byers, S., & Dakshanamurthy, S. (2016). Harnessing polypharmacology with computer-aided drug design and systems biology. Current Pharmaceutical Design, 22(21), 3097–3108. https://doi.org/10.2174/1381612822666160224141930
  • World Health Organization. (2016). Measuring effectiveness and impact of Japanese encephalitis vaccination.
  • Yadav, P., El-Kafrawy, S. A., El-Day, M. M., Alghafari, W. T., Faizo, A. A., Jha, S. K., Dwivedi, V. D., & Azhar, E. I. (2022). Discovery of Small Molecules from Echinacea angustifolia targeting RNA-Dependent RNA Polymerase of Japanese Encephalitis Virus. Life (Basel, Switzerland), 12(7), 952. https://doi.org/10.3390/life12070952
  • Zhang, X., Liu, T., Fan, X., & Ai, N. (2017). In silico modeling on ADME properties of natural products: Classification models for blood-brain barrier permeability, its application to traditional Chinese medicine and in vitro experimental validation. Journal of Molecular Graphics & Modelling, 75, 347–354. https://doi.org/10.1016/j.jmgm.2017.05.021
  • Zhu, Y., Chen, S., Lurong, Q., & Qi, Z. (2023). Recent advances in antivirals for Japanese encephalitis virus. Viruses, 15(5), 1033. https://doi.org/10.3390/v15051033

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.