48
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Computational study of the mechanism of binding of antifungal icofungipen in the active site of eukaryotic isoleucyl tRNA synthetase from Candida albicans

&
Received 02 Dec 2023, Accepted 15 Feb 2024, Published online: 06 Mar 2024

References

  • Allen, M. P., & Tildesley, D. J. (1989). Computer simulation of liquids. Oxford University Press.
  • Amyes, S. G. B., & Gemmell, C. G. (1992). Antibiotic resistance in bacteria. Journal of Medical Microbiology, 36(1), 4–29. https://doi.org/10.1099/00222615-36-1-4
  • Andriole, V. T. (1999). Current and future antifungal therapy: New targets for antifungal agents. The Journal of Antimicrobial Chemotherapy, 44(2), 151–162. https://doi.org/10.1093/jac/44.2.151
  • Barducci, A., Bussi, G., & Parrinello, M. (2008). Well-tempered metadynamics: A smoothly converging and tunable free-energy method. Physical Review Letters, 100(2), 020603. https://doi.org/10.1103/PhysRevLett.100.020603
  • BLAST: Basic Local Alignment Search Tool. (2021). Retrieved May 11, from https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastHome
  • Brooks, B. R., Brooks, C. L., III, Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., ARChontis, G., Bartels, C., Boresch, C., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., FischEr, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, E. W., Post, C. B., Pu, J. Z., Schaefer, M., Tidor, B., Venable, R. M., Woodcock, H. M., Wu, X., Yang, W., York, D. M., … Karplus, : M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614. https://doi.org/10.1002/jcc.21287
  • Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., & Karplus, M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, 4(2), 187–217. https://doi.org/10.1002/jcc.540040211
  • Brooks, C. L., Iii; Karplus, M., & Pettitt, B. M. (1988). Proteins: A theoretical perspective of dynamics, structure, and thermodynamics. Wiley.
  • Chovancova, E., Pavelka, A., Benes, P., Strnad, O., Brezovsky, J., Kozlikova, B., Gora, A., Sustr, V., Klvana, M., Medek, P., Biedermannova, L., Sochor, J., & Damborsky, J. (2012). CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Computational Biology, 8(10), e1002708.https://doi.org/10.1371/journal.pcbi.1002708
  • Chowdhury, S., Ghosh, P., & Nandi, N. (2023). Computational methods for molecular understanding of the antibiotic‐aminoacyl tRNA synthetase interaction. Current Protocols, 3(3), e699. https://doi.org/10.1002/cpz1.699
  • Chowdhury, S., & Nandi, N. (2022). Dynamics of the catalytic active site of isoleucyl tRNA synthetase from Staphylococcus aureus bound with adenylate and mupirocin. The Journal of Physical Chemistry. B, 126(3), 620–633. https://doi.org/10.1021/acs.jpcb.1c08555
  • Chung, S., Kim, S., Ryu, S. H., Hwang, K. Y., & Cho, Y. (2020). Structural basis for the antibiotic resistance of eukaryotic isoleucyl-tRNA synthetase. Mol. Cells, 43(4), 350–359.
  • DeLano, W. (2020). PyMOL [Computer software]. Schrödinger, LLC.
  • Dodda, L. S., Cabeza de Vaca, I., Tirado-Rives, J., & Jorgensen, W. L. (2017). LigParGen web server: An automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Research, 45(W1), W331–W336. https://doi.org/10.1093/nar/gkx312
  • Feller, S. E., Zhang, Y., Pastor, R. W., & Brooks, B. R. (1995). Constant pressure molecular dynamics simulation: The Langevin piston method. The Journal of Chemical Physics, 103(11), 4613–4621. https://doi.org/10.1063/1.470648
  • Frenkel, D., & Berend, S. (2002). Understanding molecular simulation: From algorithms to applications. Academic Press.
  • Garcia-Boronat, M., Diez-Rivero, C. M., Reinherz, E. L., & Reche, P. A. (2008). PVS: A web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery. Nucleic Acids Research, 36(Web Server issue), W35–W41. https://doi.org/10.1093/nar/gkn211
  • Hasenoehrl, A., Galic, T., Ergovic, G., Marˇsic, N., Skerlev, M., Mittendorf, J., Geschke, U., Schmidt, A., & Schoenfeld, W. (2006). In vitro activity and in vivo efficacy of icofungipen (PLD-118), a novel oral antifungal agent, against the pathogenic yeast Candida albicans. Antimicrobial Agents and Chemotherapy. 50, 3011–3018.
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Jurcik, A., Bednar, D., Byska, J., Marques, S. M., Furmanova, K., Daniel, L., Kokkonen, P., BrezoVSky, J., Strnad, O., Stourac, J., Pavelka, A., Manak, M., Damborsky, J., & Kozlikova, B. (2018). CAVER analyst 2.0: Analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics (Oxford, England), 34(20), 3586–3588. https://doi.org/10.1093/bioinformatics/bty386
  • Kräutler, V., et al. (2001). A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. Journal of Computational Chemistry, 22(5), 501–508.
  • MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., MaTos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., … Karplus, M. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. The Journal of Physical Chemistry. B, 102(18), 3586–3616. https://doi.org/10.1021/jp973084f
  • Mackerell, A. D., Feig, M., & Brooks, C. L. (2004). Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. Journal of Computational Chemistry, 25(11), 1400–1415. https://doi.org/10.1002/jcc.20065
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101(5), 4177–4189. https://doi.org/10.1063/1.467468
  • Mittendorf, J., Kunisch, F., Matzke, M., Militzer, H.-C., Schmidt, A., & Schönfeld, W. (2003). Novel antifungal -amino acids: Synthesis and activity against. Bioorganic & Medicinal Chemistry Letters, 13(3), 433–436. https://doi.org/10.1016/s0960-894x(02)00958-7
  • Oliva, M., de las, M., Gallucci, M. N., Carezzano, M. E., & Demo, M. S. (2013). Natural products as alternative treatments for candida species resistant to conventional chemotherapeutics. In Fighting multidrug resistance with herbal extracts, essential oils, and their components (pp. 31–43). Elsevier. https://doi.org/10.1016/B978-0-12-398539-2.00004-5
  • Pancholi, V. (2021). Liposomal Amphotericin-B in saline shows promising efficacy against Candida auris compared to azoles, echinocandins, and other amphotericin-b formulations in dextrose and deoxycholate suspension. International Archives of Medical Microbiology, 3(1), 1–10. https://doi.org/10.23937/2643-4008/1710014
  • Petraitis, V., Petraitiene, R., Kelaher, A. M., Sarafandi, A. A., Sein, T., Mickiene, D., Bacher, J., Groll, A. H., & Walsh, T. J. (2004). Efficacy of PLD-118, a novel inhibitor of Candida Isoleucyl-tRNA Synthetase, against experimental oropharyngeal and esophageal candidiasis caused by fluconazole-resistant C. albicans. Antimicrobial Agents and Chemotherapy, 48(10), 3959–3967. https://doi.org/10.1128/AAC.48.10.3959-3967.2004
  • Phillips, J. C., Hardy, D. J., Maia, J. D. C., Stone, J. E., Ribeiro, J. V., Bernardi, R. C., Buch, R., Fiorin, G., Hénin, J., Jiang, W., McGreevy, R., Melo, M. C. R., Radak, B. K., Skeel, R. D., Singharoy, A., Wang, Y., Roux, B., Aksimentiev, AL. E. KSEI., Luthey-Schulten, Z., … Tajkhorshid, E. (2020). Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of Chemical Physics, 153(4), 044130. https://doi.org/10.1063/5.0014475
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Saha, A., Dutta, S., Kundu, S., Nandi, N., & Wilson, A. K. (2018). Molecular studies of the inhibition of aminoacyl tRNA synthetases in microbial pathogens. In Zaheer-Ul-Haq (Ed.), Frontiers in computational chemistry (Vol. 4, pp. 91–143). Bentham Science Publishers.
  • Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1), 539. https://doi.org/10.1038/msb.2011.75
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • WHO. (2022). WHO fungal priority pathogens list to guide research, development, and public health action. World Health Organization (https://www.who.int/publications/i/item/9789240060241
  • Ziegelbauer, K. (1998). Decreased accumulation or increased isoleucyl-tRNA synthetase activity confers resistance to the cyclic β-amino acid BAY 10-8888 in Candida albicans and Candida tropicalis. Antimicrobial Agents and Chemotherapy, 42(7), 1581–1586. https://doi.org/10.1128/AAC.42.7.1581
  • Ziegelbauer, K., Babczinski, P., & Schönfeld, W. (1998). Molecular mode of action of the antifungal β -amino acid BAY 10-8888. Antimicrobial Agents and Chemotherapy, 42(9), 2197–2205. https://doi.org/10.1128/AAC.42.9.2197

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.