137
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Computational insights into dynamics and conformational stability of N-acetylmannosamine kinase mutations

, , , , , , , , , , & ORCID Icon show all
Received 02 May 2023, Accepted 21 Feb 2024, Published online: 19 Mar 2024

References

  • Agrahari, A. K., Kumar, A., R, S., Zayed, H., & C, G. P. D. (2018). Substitution impact of highly conserved arginine residue at position 75 in GJB1 gene in association with X-linked Charcot-Marie-tooth disease: A computational study. Journal of Theoretical Biology, 437, 305–317. S0022-5193(17)30497-6 [pii]https://doi.org/10.1016/j.jtbi.2017.10.028
  • Ahamad, S., Hema, K., Ahmad, S., Kumar, V., & Gupta, D. (2022). Insights into the structure and dynamics of SARS-CoV-2 spike glycoprotein double mutant L452R-E484Q. 3 Biotech, 12(4), 87. [pii] https://doi.org/10.1007/s13205-022-03151-0
  • Ahamad, S., Hema, K., Kumar, V., & Gupta, D. (2021). The structural, functional, and dynamic effect of Tau tubulin kinase1 upon a mutation: A neuro-degenerative hotspot. Journal of Cellular Biochemistry, 122(11), 1653–1664. https://doi.org/10.1002/jcb.30112
  • Ali, S. K., Sneha, P., Priyadharshini Christy, J., Zayed, H., & George Priya Doss, C. (2017). Molecular dynamics-based analyses of the structural instability and secondary structure of the fibrinogen gamma chain protein with the D356V mutation. Journal of Biomolecular Structure & Dynamics, 35(12), 2714–2724. https://doi.org/10.1080/07391102.2016.1229634
  • Amsili, S., Zer, H., Hinderlich, S., Krause, S., Becker-Cohen, M., MacArthur, D. G., North, K. N., & Mitrani-Rosenbaum, S. (2008). UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) binds to alpha-actinin 1: Novel pathways in skeletal muscle? PLoS One, 3(6), e2477. https://doi.org/10.1371/journal.pone.0002477
  • Argov, Z., Eisenberg, I., Grabov-Nardini, G., Sadeh, M., Wirguin, I., Soffer, D., & Mitrani-Rosenbaum, S. (2003). Hereditary inclusion body myopathy: The Middle Eastern genetic cluster. Neurology, 60(9), 1519–1523. https://doi.org/10.1212/01.wnl.0000061617.71839.42
  • Bellissent-Funel, M.-C., Hassanali, A., Havenith, M., Henchman, R., Pohl, P., Sterpone, F., van der Spoel, D., Xu, Y., & Garcia, A. E. (2016). Water determines the structure and dynamics of proteins. Chemical Reviews, 116(13), 7673–7697. https://doi.org/10.1021/acs.chemrev.5b00664
  • Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. The Journal of Physical Chemistry, 91(24), 6269–6271. https://doi.org/10.1021/j100308a038
  • Bin, X., Li, R., Ma, H., Rahaman, A., & Kumar, V. (2022). Comprehensive mapping of mutations in the C9ORF72 that affect folding and binding to SMCR8 protein. Process Biochemistry, 121, 312–321. https://doi.org/10.1016/j.procbio.2022.07.013
  • Bork, P., Sander, C., & Valencia, A. (1992). An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proceedings of the National Academy of Sciences of the United States of America, 89(16), 7290–7294. https://doi.org/10.1073/pnas.89.16.7290
  • Boyden, S. E., Duncan, A. R., Estrella, E. A., Lidov, H. G. W., Mahoney, L. J., Katz, J. S., Kunkel, L. M., & Kang, P. B. (2011). Molecular diagnosis of hereditary inclusion body myopathy by linkage analysis and identification of a novel splice site mutation in GNE. BMC Medical Genetics, 12(1), 87. 1471-2350-12-87 [pii] https://doi.org/10.1186/1471-2350-12-87
  • Büll, C., Stoel, M. A., den Brok, M. H., & Adema, G. J. (2014). Sialic acids sweeten a tumor’s life. Cancer Research, 74(12), 3199–3204. 0008-5472.CAN-14-0728 [pii] https://doi.org/10.1158/0008-5472.CAN-14-0728
  • Celeste, F. V., Vilboux, T., Ciccone, C., de Dios, J. K., Malicdan, M. C. V., Leoyklang, P., McKew, J. C., Gahl, W. A., Carrillo-Carrasco, N., & Huizing, M. (2014). Mutation update for GNE gene variants associated with GNE myopathy. Human Mutation, 35(8), 915–926. https://doi.org/10.1002/humu.22583
  • Chakravorty, S., Berger, K., Arafat, D., Nallamilli, B. R. R., Subramanian, H. P., Joseph, S., Anderson, M. E., Campbell, K. P., Glass, J., Gibson, G., & Hegde, M. (2019). Clinical utility of RNA sequencing to resolve unusual GNE myopathy with a novel promoter deletion. Muscle & Nerve, 60(1), 98–103. https://doi.org/10.1002/mus.26486
  • Chakravorty, S., Nallamilli, B. R. R., Khadilkar, S. V., Singla, M. B., Bhutada, A., Dastur, R., Gaitonde, P. S., Rufibach, L. E., Gloster, L., & Hegde, M. (2020). Clinical and genomic evaluation of 207 genetic myopathies in the Indian subcontinent. Frontiers in Neurology, 11, 559327. https://doi.org/10.3389/fneur.2020.559327
  • Chanana, P., Padhy, G., Bhargava, K., & Arya, R. (2017). Mutation in GNE downregulates peroxiredoxin IV altering ER redox homeostasis. Neuromolecular Medicine, 19(4), 525–540.[pii] https://doi.org/10.1007/s12017-017-8467-5
  • Cho, A., Christine, M., Malicdan, V., Miyakawa, M., Nonaka, I., Nishino, I., & Noguchi, S. (2017). Sialic acid deficiency is associated with oxidative stress leading to muscle atrophy and weakness in GNE myopathy. Human Molecular Genetics, 26(16), 3081–3093. 3824830 [pii] https://doi.org/10.1093/hmg/ddx192
  • Cho, A., Hayashi, Y. K., Monma, K., Oya, Y., Noguchi, S., Nonaka, I., & Nishino, I. (2014). Mutation profile of the GNE gene in Japanese patients with distal myopathy with rimmed vacuoles (GNE myopathy). Journal of Neurology, Neurosurgery, and Psychiatry, 85(8), 914–917. jnnp-2013-305587 [pii] https://doi.org/10.1136/jnnp-2013-305587
  • Cisneros, G. A., Karttunen, M., Ren, P., & Sagui, C. (2014). Classical electrostatics for biomolecular simulations. Chemical Reviews, 114(1), 779–814. https://doi.org/10.1021/cr300461d
  • Clementi, C., & Plotkin, S. S. (2004). The effects of nonnative interactions on protein folding rates: Theory and simulation. Protein Science: A Publication of the Protein Society, 13(7), 1750–1766.doi: 10.1110/ps.03580104
  • Eisenberg, I., Avidan, N., Potikha, T., Hochner, H., Chen, M., Olender, T., Barash, M., Shemesh, M., Sadeh, M., Grabov-Nardini, G., Shmilevich, I., Friedmann, A., Karpati, G., Bradley, W. G., Baumbach, L., Lancet, D., Asher, E. B., Beckmann, J. S., Argov, Z., & Mitrani-Rosenbaum, S. (2001). The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nature Genetics, 29(1), 83–87. doi: ng718 [pii]https://doi.org/10.1038/ng718
  • Ferreiro, D. U., Hegler, J. A., Komives, E. A., & Wolynes, P. G. (2007). Localizing frustration in native proteins and protein assemblies. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19819–19824. doi: 0709915104 [pii] 8521 [pii] https://doi.org/10.1073/pnas.0709915104
  • Ferreiro, D. U., Komives, E. A., & Wolynes, P. G. (2014). Frustration in biomolecules. Quarterly Reviews of Biophysics, 47(4), 285–363. S0033583514000092 [pii] https://doi.org/10.1017/S0033583514000092
  • Gianni, S., Camilloni, C., Giri, R., Toto, A., Bonetti, D., Morrone, A., Sormanni, P., Brunori, M., & Vendruscolo, M. (2014). Understanding the frustration arising from the competition between function, misfolding, and aggregation in a globular protein. Proceedings of the National Academy of Sciences of the United States of America, 111(39), 14141–14146. 1405233111 [pii] 201405233 [pii] https://doi.org/10.1073/pnas.1405233111
  • Harazi, A., Becker-Cohen, M., Zer, H., Moshel, O., Hinderlich, S., & Mitrani-Rosenbaum, S. (2017). The interaction of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) and alpha-actinin 2 is altered in GNE myopathy M743T mutant. Molecular Neurobiology, 54(4), 2928–2938.[pii] https://doi.org/10.1007/s12035-016-9862-x
  • Harazi, A., Chaouat, M., Shlomai, Z., Levitzki, R., Becker-Cohen, M., Sadeh, M., Dabby, R., Ben-Bassat, H., & Mitrani-Rosenbaum, S. (2015). Survival-apoptosis associated signaling in GNE myopathy-cultured myoblasts. Journal of Receptor and Signal Transduction Research, 35(4), 249–257. https://doi.org/10.3109/10799893.2014.956755
  • Hinderlich, S., Weidemann, W., Yardeni, T., Horstkorte, R., & Huizing, M. (2015). UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE): A master regulator of sialic acid synthesis. Topics in Current Chemistry, 366, 97–137. https://doi.org/10.1007/128_2013_464
  • Huang, J., & MacKerell, A. D. Jr. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Huizing, M., Carrillo-Carrasco, N., Malicdan, M. C. V., Noguchi, S., Gahl, W. A., Mitrani-Rosenbaum, S., Argov, Z., & Nishino, I. (2014). GNE myopathy: New name and new mutation nomenclature. Neuromuscular Disorders: NMD, 24(5), 387–389.doi: https://doi.org/10.1016/j.nmd.2014.03.004
  • Husain, S., Kumar, V., & Hassan, M. I. (2018). Phosphorylation-induced changes in the energetic frustration in human Tank binding kinase 1. Journal of Theoretical Biology, 449, 14–22.doi: 10.1016/j.jtbi.2018.04.016
  • Keppler, O. T., Hinderlich, S., Langner, J., Schwartz-Albiez, R., Reutter, W., & Pawlita, M. (1999). UDP-GlcNAc 2-epimerase: A regulator of cell surface sialylation. Science (New York, N.Y.), 284(5418), 1372–1376.doi: 10.1126/science.284.5418.1372
  • Khadilkar, S. V., Halani, H. A., Dastur, R., Gaitonde, P. S., Oza, H., & Hegde, M. (2022). Genetic appraisal of hereditary muscle disorders in a cohort From Mumbai, India. Journal of Neuromuscular Diseases, 9(4), 571–580.doi: 10.3233/JND-220801
  • Khatoon, F., Kumar, V., Anjum, F., Shafie, A., Adnan, M., & Hassan, M. I. (2022). Frustration analysis of TBK1 missense mutations reported in ALS/FTD and cancer patients. 3 Biotech, 12(8), 174.doi: 10.1007/s13205-022-03240-0
  • Krause, S., Hinderlich, S., Amsili, S., Horstkorte, R., Wiendl, H., Argov, Z., Mitrani-Rosenbaum, S., & Lochmüller, H. (2005). Localization of UDP-GlcNAc 2-epimerase/ManAc kinase (GNE) in the Golgi complex and the nucleus of mammalian cells. Experimental Cell Research, 304(2), 365–379. doi: https://doi.org/10.1016/j.yexcr.2004.11.010
  • Kumar, V. (2021). Molecular interactions between C9ORF72 and SMCR8: A local energetic frustration perspective. Biochemical and Biophysical Research Communications, 570, 1–7. doi: https://doi.org/10.1016/j.bbrc.2021.07.016
  • Kumar, V., Pandey, P., Idrees, D., Prakash, A., & Lynn, A. M. (2019). Delineating the effect of mutations on the conformational dynamics of N-terminal domain of TDP-43. Biophysical Chemistry, 250, 106174. doi: https://doi.org/10.1016/j.bpc.2019.106174
  • Lundborg, M., & Lindahl, E. (2015). Automatic GROMACS topology generation and comparisons of force fields for solvation free energy calculations. The Journal of Physical Chemistry. B, 119(3), 810–823. https://doi.org/10.1021/jp505332p
  • Martinez, J., Nguyen, L. D., Hinderlich, S., Zimmer, R., Tauberger, E., Reutter, W., Saenger, W., Fan, H., & Moniot, S. (2012). Crystal structures of N-acetylmannosamine kinase provide insights into enzyme activity and inhibition. The Journal of Biological Chemistry, 287(17), 13656–13665.doi: https://doi.org/10.1074/jbc.M111.318170
  • McGibbon, R. T., Beauchamp, K. A., Harrigan, M. P., Klein, C., Swails, J. M., Hernández, C. X., Schwantes, C. R., Wang, L.-P., Lane, T. J., & Pande, V. S. (2015). MDTraj: A modern open library for the analysis of molecular dynamics trajectories. Biophysical Journal, 109(8), 1528–1532.doi: https://doi.org/10.1016/j.bpj.2015.08.015
  • Miyagi, T., Wada, T., Yamaguchi, K., & Hata, K. (2004). Sialidase and malignancy: A minireview. Glycoconjugate Journal, 20(3), 189–198.doi: 10.1023/B:GLYC.0000024250.48506.bf
  • Mohammad, T., Amir, M., Prasad, K., Batra, S., Kumar, V., Hussain, A., Rehman, M. T., AlAjmi, M. F., & Hassan, M. I. (2020). Impact of amino acid substitution in the kinase domain of Bruton tyrosine kinase and its association with X-linked agammaglobulinemia. International Journal of Biological Macromolecules, 164, 2399–2408. doi: https://doi.org/10.1016/j.ijbiomac.2020.08.057
  • Mori-Yoshimura, M., Monma, K., Suzuki, N., Aoki, M., Kumamoto, T., Tanaka, K., Tomimitsu, H., Nakano, S., Sonoo, M., Shimizu, J., Sugie, K., Nakamura, H., Oya, Y., Hayashi, Y. K., Malicdan, M. C. V., Noguchi, S., Murata, M., & Nishino, I. (2012). Heterozygous UDP-GlcNAc 2-epimerase and N-acetylmannosamine kinase domain mutations in the GNE gene result in a less severe GNE myopathy phenotype compared to homozygous N-acetylmannosamine kinase domain mutations. Journal of the Neurological Sciences, 318(1-2), 100–105.doi: https://doi.org/10.1016/j.jns.2012.03.016
  • Mori-Yoshimura, M., Oya, Y., Yajima, H., Yonemoto, N., Kobayashi, Y., Hayashi, Y. K., Noguchi, S., Nishino, I., & Murata, M. (2014). GNE myopathy: A prospective natural history study of disease progression. Neuromuscular Disorders: NMD, 24(5), 380–386.doi: https://doi.org/10.1016/j.nmd.2014.02.008
  • Mukai, T., Kawai, S., Mori, S., Mikami, B., & Murata, K. (2004). Crystal structure of bacterial inorganic polyphosphate/ATP-glucomannokinase. Insights into kinase evolution. The Journal of Biological Chemistry, 279(48), 50591–50600.doi: https://doi.org/10.1074/jbc.M408126200
  • Nakamura, K., Tsukamoto, Y., Hijiya, N., Higuchi, Y., Yano, S., Yokoyama, S., Kumamoto, T., & Moriyama, M. (2010). Induction of GNE in myofibers after muscle injury. Pathobiology: Journal of Immunopathology, Molecular and Cellular Biology, 77(4), 191–199.doi: https://doi.org/10.1159/000292652
  • Nishimasu, H., Fushinobu, S., Shoun, H., & Wakagi, T. (2007). Crystal structures of an ATP-dependent hexokinase with broad substrate specificity from the hyperthermophilic archaeon Sulfolobus tokodaii. The Journal of Biological Chemistry, 282(13), 9923–9931.doi: https://doi.org/10.1074/jbc.M610678200
  • Nishino, I., Noguchi, S., Murayama, K., Driss, A., Sugie, K., Oya, Y., Nagata, T., Chida, K., Takahashi, T., Takusa, Y., Ohi, T., Nishimiya, J., Sunohara, N., Ciafaloni, E., Kawai, M., Aoki, M., & Nonaka, I. (2002). Distal myopathy with rimmed vacuoles is allelic to hereditary inclusion body myopathy. Neurology, 59(11), 1689–1693.doi: https://doi.org/10.1212/01.wnl.0000041631.28557.c6
  • Onuchic, J. N., Luthey-Schulten, Z., & Wolynes, P. G. (1997). Theory of protein folding: The energy landscape perspective. Annual Review of Physical Chemistry, 48(1), 545–600.doi: https://doi.org/10.1146/annurev.physchem.48.1.545
  • Parra, R. G., Schafer, N. P., Radusky, L. G., Tsai, M. Y., Guzovsky, A. B., Wolynes, P. G., & Ferreiro, D. U. (2016). Protein Frustratometer 2: A tool to localize energetic frustration in protein molecules, now with electrostatics. Nucleic Acids Research, 44(W1), W356–360.doi: https://doi.org/10.1093/nar/gkw304
  • Parrinello, M., & Rahman, A. (1980). Crystal structure and pair potentials: A molecular-dynamics study. Physical Review Letters, 45(14), 1196–1199.doi: https://doi.org/10.1103/PhysRevLett.45.1196
  • Pogoryelova, O., Cammish, P., Mansbach, H., Argov, Z., Nishino, I., Skrinar, A., Chan, Y., Nafissi, S., Shamshiri, H., Kakkis, E., & Lochmüller, H. (2018). Phenotypic stratification and genotype-phenotype correlation in a heterogeneous, international cohort of GNE myopathy patients: First report from the GNE myopathy Disease Monitoring Program, registry portion. Neuromuscular Disorders: NMD, 28(2), 158–168.doi: https://doi.org/10.1016/j.nmd.2017.11.001
  • Prakash, A., Kumar, V., Banerjee, A., Lynn, A. M., & Prasad, R. (2020). Structural heterogeneity in RNA recognition motif 2 (RRM2) of TAR DNA-binding protein 43 (TDP-43): clue to amyotrophic lateral sclerosis. Journal of Biomolecular Structure & Dynamics, 39(1), 357–367. https://doi.org/10.1080/07391102.2020.1714481
  • Prakash, A., Kumar, V., Meena, N. K., Hassan, M. I., & Lynn, A. M. (2019). Comparative analysis of thermal unfolding simulations of RNA recognition motifs (RRMs) of TAR DNA-binding protein 43 (TDP-43). Journal of Biomolecular Structure & Dynamics, 37(1), 178–194.doi: https://doi.org/10.1080/07391102.2017.1422026
  • Prakash, A., Kumar, V., N., Kumar Meena, & Lynn, A. M. (2018). Elucidation of the structural stability and dynamics of heterogeneous intermediate ensembles in unfolding pathway of the N-terminal domain of TDP-43. RSC Advances, 8(35), 19835–19845. https://doi.org/10.1039/c8ra03368d
  • Schauer, R. (2009). Sialic acids as regulators of molecular and cellular interactions. Current Opinion in Structural Biology, 19(5), 507–514.doi: https://doi.org/10.1016/j.sbi.2009.06.003
  • Schwarzkopf, M., Knobeloch, K.-P., Rohde, E., Hinderlich, S., Wiechens, N., Lucka, L., Horak, I., Reutter, W., & Horstkorte, R. (2002). Sialylation is essential for early development in mice. Proceedings of the National Academy of Sciences of the United States of America, 99(8), 5267–5270.doi: https://doi.org/10.1073/pnas.072066199
  • Shukla, H., Shukla, R., Sonkar, A., Pandey, T., & Tripathi, T. (2017). Distant Phe345 mutation compromises the stability and activity of Mycobacterium tuberculosis isocitrate lyase by modulating its structural flexibility. Scientific Reports, 7(1), 1058.doi: https://doi.org/10.1038/s41598-017-01235-z
  • Suzuki, Y. (2005). Sialobiology of influenza: Molecular mechanism of host range variation of influenza viruses. Biological & Pharmaceutical Bulletin, 28(3), 399–408.doi: https://doi.org/10.1248/bpb.28.399
  • Titgemeyer, F., Reizer, J., Reizer, A., & Saier, M. H. Jr. (1994). Evolutionary relationships between sugar kinases and transcriptional repressors in bacteria. Microbiology (Reading, England), 140 (Pt 9)(9), 2349–2354.doi: https://doi.org/10.1099/13500872-140-9-2349
  • Tong, Y., Tempel, W., Nedyalkova, L., Mackenzie, F., & Park, H. W. (2009). Crystal structure of the N-acetylmannosamine kinase domain of GNE. PLoS One, 4(10), e7165.doi: https://doi.org/10.1371/journal.pone.0007165
  • Udd, B. (2011). Distal muscular dystrophies. Handbook of Clinical Neurology, 101, 239–262.doi: https://doi.org/10.1016/B978-0-08-045031-5.00016-5
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Weidemann, W., Klukas, C., Klein, A., Simm, A., Schreiber, F., & Horstkorte, R. (2010). Lessons from GNE-deficient embryonic stem cells: Sialic acid biosynthesis is involved in proliferation and gene expression. Glycobiology, 20(1), 107–117.doi: https://doi.org/10.1093/glycob/cwp153
  • Weidemann, W., Stelzl, U., Lisewski, U., Bork, K., Wanker, E. E., Hinderlich, S., & Horstkorte, R. (2006). The collapsin response mediator protein 1 (CRMP-1) and the promyelocytic leukemia zinc finger protein (PLZF) bind to UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), the key enzyme of sialic acid biosynthesis. FEBS Letters, 580(28-29), 6649–6654.doi: https://doi.org/10.1016/j.febslet.2006.11.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.