139
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structural insights into non-hotspot KRAS mutations and their potential as targets for effective cancer therapies

, , , &
Received 04 Jan 2024, Accepted 07 Feb 2024, Published online: 14 Mar 2024

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Addeo, A., Banna, G. L., & Friedlaender, A. (2021). Kras g12c mutations in nsclc: From target to resistance. Cancers, 13(11), 2541. https://doi.org/10.3390/cancers13112541
  • Al-Khafaji, K., & Taskin Tok, T. (2020). Molecular dynamics simulation, free energy landscape and binding free energy computations in exploration the anti-invasive activity of amygdalin against metastasis. Computer Methods and Programs in Biomedicine, 195, 105660. https://doi.org/10.1016/j.cmpb.2020.105660
  • Angeles, A. K. J., Yu, R. T. D., De, LA PAZ. EMC., & Garcia, R. L. (2019). Phenotypic characterization of the novel, non-hotspot oncogenic KRAS mutants E31D and E63K. Oncology Letters, 18(1), 420–432. https://doi.org/10.3892/ol.2019.10325
  • Chen, C.-C., Hsu, C.-Y., Lin, H.-Y., Zeng, H.-Q., Cheng, K.-H., Wu, C.-W., Tsai, E.-M., & Hsieh, T.-H. (2020). KRAS K104 modification affects the KRASG12D-GEF interaction and mediates cell growth and motility. Scientific Reports, 10(1), 17447. https://doi.org/10.1038/s41598-020-74463-5
  • Chen, J., Wang, L., Wang, W., Sun, H., Pang, L., & Bao, H. (2021a). Conformational transformation of switch domains in GDP/K-Ras induced by G13 mutants: An investigation through Gaussian accelerated molecular dynamics simulations and principal component analysis. Computers in Biology and Medicine, 135, 104639.
  • Chen, J., Zeng, Q., Wang, W., Hu, Q., & Bao, H. (2022). Q61 mutant-mediated dynamics changes of the GTP-KRAS complex probed by Gaussian accelerated molecular dynamics and free energy landscapes. RSC Advances, 12(3), 1742–1757. https://doi.org/10.1039/d1ra07936k
  • Chen, J., Zhang, S., Wang, W., Pang, L., Zhang, Q., & Liu, X. (2021b). Mutation-Induced Impacts on the Switch Transformations of the GDP-and GTP-Bound K-Ras: Insights from multiple replica Gaussian accelerated molecular dynamics and free energy analysis. Journal of Chemical Information and Modeling, 61(4), 1954–1969. https://doi.org/10.1021/acs.jcim.0c01470
  • Cyniak-Magierska, A., Brzeziańska, E., Januszkiewicz-Caulier, J., Jarzab, B., & Lewiński, A. (2007). Prevalence of RAS point mutations in papillary thyroid carcinoma; a novel mutation at codon 31 of K-RAS. Experimental and Clinical Endocrinology & Diabetes: Official Journal, German Society of Endocrinology [and] German Diabetes Association, 115(9), 594–599. https://doi.org/10.1055/s-2007-981670
  • da Silva, D. F., de Souza, J. L., da Costa, D. M., Costa, D. B., Moreira, P. O. L., Fonseca, A. L. D., Varotti, F. D P., Cruz, J. N., Dos Santos, C. B. R., Alves, C. Q., Leite, F. H. A., & Brandão, H. N. (2023). Antiplasmodial activity of coumarins isolated from Polygala boliviensis: In vitro and in silico studies. Journal of Biomolecular Structure & Dynamics, 41(22), 13383–13403. https://doi.org/10.1080/07391102.2023.2173295
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, N.J.), 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • de Almeida, R. B. M., Barbosa, D. B., do Bomfim, M. R., Amparo, J. A. O., Andrade, B. S., Costa, S. L., Campos, J. M., Cruz, J. N., Santos, C. B. R., Leite, F. H. A., & Botura, M. B. (2023). Identification of a Novel dual inhibitor of acetylcholinesterase and butyrylcholinesterase: In vitro and in silico Studies. Pharmaceuticals, 16(1), 95. https://doi.org/10.3390/ph16010095
  • De, S. K. (2024). First approval of adagrasib for the treatment of non-small cell lung cancer harboring a KRASG12C mutation. Current Medicinal Chemistry, 31(3), 266–272. https://doi.org/10.2174/0929867330666230330122000
  • Di Federico, A., Ricciotti, I., Favorito, V., Michelina, S. V., Scaparone, P., Metro, G., De Giglio, A., Pecci, F., Lamberti, G., Ambrogio, C., & Ricciuti, B. (2023). Resistance to KRAS G12C inhibition in non-small cell lung cancer. Current Oncology Reports, 25(9), 1017–1029. Available from: https://doi.org/10.1007/s11912-023-01436-y
  • Dy, G. K., Govindan, R., Velcheti, V., Falchook, G. S., Italiano, A., Wolf, J., Sacher, A. G., Takahashi, T., Ramalingam, S. S., Dooms, C., Kim, D.-W., Addeo, A., Desai, J., Schuler, M., Tomasini, P., Hong, D. S., Lito, P., Tran, Q., Jones, S., … Li, B. T. (2023). Long-term outcomes and molecular correlates of sotorasib efficacy in patients with pretreated KRAS G12C-mutated non-small-cell lung cancer: 2-Year analysis of CodeBreaK 100. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 41(18), 3311–3317. https://doi.org/10.1200/JCO.22.02524
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  • Friedlaender, A., Drilon, A., Weiss, G. J., Banna, G. L., & Addeo, A. (2020). KRAS as a druggable target in NSCLC: Rising like a phoenix after decades of development failures. Cancer Treat Rev, 85.
  • Gautam, R. K., Singh, P. K., Sakthivel, K., Srikumar, M., Kumar, N., Kumar, K., Singh, A. K., & Roy, S. D. (2015). Analysis of pathogenic diversity of the rice bacterial blight pathogen (Xanthomonas oryzae pv. oryzae) in the Andaman islands and identification of effective resistance genes. Journal of Phytopathology. 163(6), 423–432. https://doi.org/10.1111/jph.12338
  • Huang, J., & Mackerell, A. D. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Huang, L., Guo, Z., Wang, F., & Fu, L. (2021). KRAS mutation: From undruggable to druggable in cancer. Signal Transduction and Targeted Therapy, 6(1), 386. https://doi.org/10.1038/s41392-021-00780-4
  • Kosakovsky Pond, S. L., Frost, S. D. W., Grossman, Z., Gravenor, M. B., Richman, D. D., & Leigh Brown, A. J. (2006). Adaptation to different human populations by HIV-1 revealed by codon-based analyses. PLoS Computational Biology, 2(6), e62. https://doi.org/10.1371/journal.pcbi.0020062
  • Li, Y., Sun, L., Guo, X., Mo, N., Zhang, J., & Li, C. (2021). Frontiers in bladder cancer genomic research. Frontiers in Oncology, 11, 670729. https://doi.org/10.3389/fonc.2021.670729
  • Lin, S. R., Tsai, J. H., Yang, Y. C., & Lee, S. C. (1998). Mutations of K-ras oncogene in human adrenal tumours in Taiwan. British Journal of Cancer, 77(7), 1060–1065. https://doi.org/10.1038/bjc.1998.177
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Mooers, B. H. M. (2020). Shortcuts for faster image creation in PyMOL. Protein Science: A Publication of the Protein Society, 29(1), 268–276. https://doi.org/10.1002/pro.3781
  • Murtaza, B. N., Bibi, A., Nadeem, M. S., Chaudri, M. S., & Shakoori, A. R. (2012). Identification of a novel mutation in codon 31 of Kirstein rat sarcoma viral oncogene homologue in colon Cancer: Another evidence of non-canonical mutational pathway. Pak J Zool, 44(6), 1671–1676.
  • Ostrem, J. M. L., & Shokat, K. M. (2016). Direct small-molecule inhibitors of KRAS: From structural insights to mechanism-based design. Nature Reviews. Drug Discovery, 15(11), 771–785. Available from: https://doi.org/10.1038/nrd.2016.139
  • Palma, G., Khurshid, F., Lu, K., Woodward, B., & Husain, H. (2021). Selective KRAS G12C inhibitors in non-small cell lung cancer: Chemistry, concurrent pathway alterations, and clinical outcomes. NPJ Precision Oncology, 5(1), 98. https://doi.org/10.1038/s41698-021-00237-5
  • Patel, M., Lee, J.-S., De Miguel, M. J., Burns, T., Falcon Gonzalez, A., Kim, T. W., Krebs, M. G., Prenen, H., Shacham Shmueli, E., Desai, J., Lorusso, P., Sacher, A., Choi, Y., Dharia, N., Lin, M. T., Mandlekar, S., Royer-Joo, S., Schutzman, J. L., & Garralda, E. (2022). 459MO Phase Ia study to evaluate GDC-6036 monotherapy in patients with solid tumors with a KRAS G12C mutation. Annals of Oncology, 33, S749. https://doi.org/10.1016/j.annonc.2022.07.588
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera: A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pires, D. E. V., Ascher, D. B., & Blundell, T. L. (2014). MCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics (Oxford, England), 30(3), 335–342. https://doi.org/10.1093/bioinformatics/btt691
  • Pleasance, E. D., Cheetham, R. K., Stephens, P. J., McBride, D. J., Humphray, S. J., Greenman, C. D., Varela, I., Lin, M.-L., Ordóñez, G. R., Bignell, G. R., Ye, K., Alipaz, J., Bauer, M. J., Beare, D., Butler, A., Carter, R. J., Chen, L., Cox, A. J., Edkins, S., … Stratton, M. R. (2010). A comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 463(7278), 191–196. https://doi.org/10.1038/nature08658
  • Ricciuti, B., Alessi, J. V., Elkrief, A., Wang, X., Cortellini, A., Li, Y. Y., Vaz, V. R., Gupta, H., Pecci, F., Barrichello, A., Lamberti, G., Nguyen, T., Lindsay, J., Sharma, B., Felt, K., Rodig, S. J., Nishino, M., Sholl, L. M., Barbie, D. A., … Luo, J. (2022). Dissecting the clinicopathologic, genomic, and immunophenotypic correlates of KRASG12D-mutated non-small-cell lung cancer. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 33(10), 1029–1040. https://doi.org/10.1016/j.annonc.2022.07.005
  • Rodrigues, C. H. M., Pires, D. E. V., & Ascher, D. B. (2018). DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Research, 46(W1), W350–W355. https://doi.org/10.1093/nar/gky300
  • Seeburg, P. H., Colby, W. W., Capon, D. J., Goeddel, D. V., & Levinson, A. D. (1984). Biological properties of human c-Ha-ras1 genes mutated at codon 12. Nature, 312(5989), 71–75. https://doi.org/10.1038/312071a0
  • Silva, Luciane B, Ferreira, Elenilze F B, Espejo-Román, José M, Costa, Glauber V, Cruz, Josiane V, Kimani, Njogu M, Costa, Josivan S, Bittencourt, José A H M, Cruz, Jorddy N, Campos, Joaquín M, Santos, Cleydson B R, Maryam. (2023). Galantamine based novel acetylcholinesterase enzyme inhibitors: A molecular modeling design approach. Molecules (Basel, Switzerland), 28(3). https://doi.org/10.3390/molecules28031035
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367
  • Weiss, A., Lorthiois, E., Barys, L., Beyer, K. S., Bomio-Confaglia, C., Burks, H., Chen, X., Cui, X., de Kanter, R., Dharmarajan, L., Fedele, C., Gerspacher, M., Guthy, D. A., Head, V., Jaeger, A., Núñez, E. J., Kearns, J. D., Leblanc, C., Maira, S.-M., … Brachmann, S. M. (2022). Discovery, preclinical characterization, and early clinical activity of JDQ443, a structurally novel, potent, and selective covalent oral inhibitor of KRASG12C. Cancer Discovery, 12(6), 1500–1517. https://doi.org/10.1158/2159-8290.CD-22-0158

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.