84
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Detection of intrinsic transcription termination sites in bacteria: consensus from hairpin detection approaches

&
Received 19 Nov 2023, Accepted 23 Feb 2024, Published online: 11 Apr 2024

References

  • Arndt, K. M., & Chamberlin, M. J. (1990). RNA chain elongation by Escherichia coli RNA polymerase. Factors affecting the stability of elongating ternary complexes. Journal of Molecular Biology, 213(1), 79–108. https://doi.org/10.1016/S0022-2836(05)80123-8
  • Biesiada, M., Purzycka, K. J., Szachniuk, M., Blazewicz, J., & Adamiak, R. W. (2016). Automated RNA 3D structure prediction with RNAComposer. Methods in Molecular Biology, 1490, 199–215. https://doi.org/10.1007/978-1-4939-6433-8_13
  • Boniecki, M. J., Lach, G., Dawson, W. K., Tomala, K., Lukasz, P., Soltysinski, T., Rother, K. M., & Bujnicki, J. M. (2016). SimRNA: A coarse-grained method for RNA folding simulations and 3D structure prediction. Nucleic Acids Research, 44(7), e63–e63. https://doi.org/10.1093/nar/gkv1479
  • Brendel, V., Hamm, G. H., & Trifonov, E. N. (1986). Terminators of transcription with RNA polymerase from Escherichia coli: What they look like and how to find them. Journal of Biomolecular Structure & Dynamics, 3(4), 705–723. https://doi.org/10.1080/07391102.1986.10508457
  • Brendel, V., & Trifonov, E. N. (1984). A computer algorithm for testing potential prokaryotic terminators. Nucleic Acids Research, 12(10), 4411–4427. https://doi.org/10.1093/nar/12.10.4411
  • Cambray, G., Guimaraes, J. C., Mutalik, V. K., Lam, C., Mai, Q. A., Thimmaiah, T., Carothers, J. M., Arkin, A. P., & Endy, D. (2013). Measurement and modeling of intrinsic transcription terminators. Nucleic Acids Research, 41(9), 5139–5148. https://doi.org/10.1093/nar/gkt163
  • Chavez, D. G. C., Gardner, M. A., & Griffitts, J. S. (2022). Engineering efficient termination of bacteriophage T7 RNA polymerase transcription. G3 Genes | Genomes | Genetics, 12(6), 1–6. https://doi.org/10.1093/g3journal/jkac070.
  • Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., & Richardson, D. C. (2010). MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D, Biological Crystallography, 66(Pt 1), 12–21. https://doi.org/10.1107/S0907444909042073
  • Chen, Y. J., Liu, P., Nielsen, A. A., Brophy, J. A., Clancy, K., Peterson, T., & Voigt, C. A. (2013). Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nature Methods, 10(7), 659–664. https://doi.org/10.1038/nmeth.2515
  • d’Aubenton Carafa, Y., Brody, E., & Thermes, C. (1990). Prediction of rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem-loop structures. Journal of Molecular Biology, 216(4), 835–858. https://doi.org/10.1016/s0022-2836(99)80005-9
  • del Solar, G., Giraldo, R., Ruiz-Echevarría, M. J., Espinosa, M., & Díaz-Orejas, R. (1998). Replication and control of circular bacterial plasmids. Microbiology and Molecular Biology Reviews, 62(2), 434–464. https://doi.org/10.1128/MMBR.62.2.434-464.1998
  • Do, C. B., Woods, D. A., & Batzoglou, S. (2006). CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics (Oxford, England), 22(14), e90-98–e98. https://doi.org/10.1093/bioinformatics/btl246
  • Ermolaeva, M. D., Khalak, H. G., White, O., Smith, H. O., & Salzberg, S. L. (2000). Prediction of transcription terminators in bacterial genomes. Journal of Molecular Biology, 301(1), 27–33. https://doi.org/10.1006/jmbi.2000.3836
  • Feng, C. Q., Zhang, Z. Y., Zhu, X. J., Lin, Y., Chen, W., Tang, H., & Lin, H. (2019). iTerm-PseKNC: A sequence-based tool for predicting bacterial transcriptional terminators. Bioinformatics (Oxford, England), 35(9), 1469–1477. https://doi.org/10.1093/bioinformatics/bty827
  • Gardner, P. P., Barquist, L., Bateman, A., Nawrocki, E. P., & Weinberg, Z. (2011). RNIE: Genome-wide prediction of bacterial intrinsic terminators. Nucleic Acids Research, 39(14), 5845–5852. https://doi.org/10.1093/nar/gkr168
  • Gupta, S., Padmashali, N., & Pal, D. (2023). INTERPIN: A repository for intrinsic transcription termination hairpins in bacteria. Biochimie, 214(Pt B), 228–236. https://doi.org/10.1016/j.biochi.2023.07.018
  • Gupta, S., & Pal, D. (2021). Clusters of hairpins induce intrinsic transcription termination in bacteria. Scientific Reports, 11(1), 16194. https://doi.org/10.1038/s41598-021-95435-3
  • Gusarov, I., & Nudler, E. (2001). Control of intrinsic transcription termination by N and NusA: The basic mechanisms. Cell, 107(4), 437–449. https://doi.org/10.1016/s0092-8674(01)00582-7
  • Hamada, M., Sato, K., Kiryu, H., Mituyama, T., & Asai, K. (2009). Predictions of RNA secondary structure by combining homologous sequence information. Bioinformatics (Oxford, England), 25(12), i330–338. https://doi.org/10.1093/bioinformatics/btp228
  • Hartmann, R. K., & Erdmann, V. A. (1991). Analysis of the gene encoding the RNA subunit of ribonuclease P from T. thermophilus HB8. Nucleic Acids Research, 19(21), 5957–5964. https://doi.org/10.1093/nar/19.21.5957
  • Ingham, C. J., Hunter, I. S., & Smith, M. C. (1995). Rho-independent terminators without 3' poly-U tails from the early region of actinophage oC31. Nucleic Acids Research, 23(3), 370–376. https://doi.org/10.1093/nar/23.3.370
  • Kingsford, C. L., Ayanbule, K., & Salzberg, S. L. (2007). Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biology, 8(2), R22. https://doi.org/10.1186/gb-2007-8-2-r22
  • Kumar, M., Bhasin, M., Natt, N. K., & Raghava, G. P. (2005). BhairPred: Prediction of beta-hairpins in a protein from multiple alignment information using ANN and SVM techniques. Nucleic Acids Research, 33, W154–159. https://doi.org/10.1093/nar/gki588
  • Lesnik, E. A., Sampath, R., Levene, H. B., Henderson, T. J., McNeil, J. A., & Ecker, D. J. (2001). Prediction of rho-independent transcriptional terminators in Escherichia coli. Nucleic Acids Research, 29(17), 3583–3594. https://doi.org/10.1093/nar/29.17.3583
  • Lyakhov, D. L., He, B., Zhang, X., Studier, F. W., Dunn, J. J., & McAllister, W. T. (1998). Pausing and termination by bacteriophage T7 RNA polymerase. Journal of Molecular Biology, 280(2), 201–213. https://doi.org/10.1006/jmbi.1998.1854
  • Mahen, E. M., Watson, P. Y., Cottrell, J. W., & Fedor, M. J. (2010). mRNA secondary structures fold sequentially but exchange rapidly in vivo. PLoS Biology, 8(2), e1000307. https://doi.org/10.1371/journal.pbio.1000307
  • Mathews, D. H., Sabina, J., Zuker, M., & Turner, D. H. (1999). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. Journal of Molecular Biology, 288(5), 911–940. https://doi.org/10.1006/jmbi.1999.2700
  • Mathews, D. H., & Turner, D. H. (2002). Dynalign: An algorithm for finding the secondary structure common to two RNA sequences. Journal of Molecular Biology, 317(2), 191–203. https://doi.org/10.1006/jmbi.2001.5351
  • McMahon, J. E., & Tinoco, I. Jr. (1978). Sequences and efficiencies of proposed mRNA terminators. Nature, 271(5642), 275–277. https://doi.org/10.1038/271275a0
  • Mitra, A., Kesarwani, A. K., Pal, D., & Nagaraja, V. (2011). WebGeSTer DB–a transcription terminator database. Nucleic Acids Research, 39, D129–135. https://doi.org/10.1093/nar/gkq971
  • Naville, M., Ghuillot-Gaudeffroy, A., Marchais, A., & Gautheret, D. (2011). ARNold: A web tool for the prediction of Rho-independent transcription terminators. RNA Biology, 8(1), 11–13. https://doi.org/10.4161/rna.8.1.13346
  • Otsuka, J., & Kunisawa, T. (1982). Characteristic base sequence patterns of promoter and terminator sites in phi X174 and fd phage DNAs. Journal of Theoretical Biology, 97(3), 415–436. https://doi.org/10.1016/0022-5193(82)90374-5
  • Popenda, M., Szachniuk, M., Antczak, M., Purzycka, K. J., Lukasiak, P., Bartol, N., Blazewicz, J., & Adamiak, R. W. (2012). Automated 3D structure composition for large RNAs. Nucleic Acids Research, 40(14), e112–e112. https://doi.org/10.1093/nar/gks339
  • Ratushna, V. G., Weller, J. W., & Gibas, C. J. (2005). Secondary structure in the target as a confounding factor in synthetic oligomer microarray design. BMC Genomics, 6(1), 31. https://doi.org/10.1186/1471-2164-6-31
  • Rhodes, G., & Chamberlin, M. J. (1974). Ribonucleic acid chain elongation by Escherichia coli ribonucleic acid polymerase. I. Isolation of ternary complexes and the kinetics of elongation. The Journal of Biological Chemistry, 249(20), 6675–6683. https://doi.org/10.1016/S0021-9258(19)42207-2
  • Smith, T. F., Waterman, M. S., & Sadler, J. R. (1983). Statistical characterization of nucleic acid sequence functional domains. Nucleic Acids Research, 11(7), 2205–2220. https://doi.org/10.1093/nar/11.7.2205
  • Sohn, Y., & Kang, C. (2005). Sequential multiple functions of the conserved sequence in sequence-specific termination by T7 RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 102(1), 75–80. https://doi.org/10.1073/pnas.0406581101
  • Solovyev, V., Fokin, O., Seledtsov, I., Salamov, A., Molodtsov, V., Okhalin, N., & Vorobyev, D. (2018). MolQuest - bioinformatics toolbox for analysis of biomedical data. http://www.molquest.com
  • Steiner, K., & Malke, H. (1995). Transcription termination of the streptokinase gene of Streptococcus equisimilis H46A: Bidirectionality and efficiency in homologous and heterologous hosts. Molecular & General Genetics, 246(3), 374–380. https://doi.org/10.1007/BF00288611
  • Swenson, M. S., Anderson, J., Ash, A., Gaurav, P., Sükösd, Z., Bader, D. A., Harvey, S. C., & Heitsch, C. E. (2012). GTfold: Enabling parallel RNA secondary structure prediction on multi-core desktops. BMC Research Notes, 5(1), 341. https://doi.org/10.1186/1756-0500-5-341
  • Theis, C., Janssen, S., & Giegerich, R. (2010). Prediction of RNA secondary structure including kissing Hairpin Motifs. Algorithms in Bioinformatics. 10th International Workshop (WABI 2010), Liverpool, UK, September 6-8, 2010. Berlin Heidelberg: Springer.
  • Unniraman, S., Prakash, R., & Nagaraja, V. (2001). Alternate paradigm for intrinsic transcription termination in eubacteria. The Journal of Biological Chemistry, 276(45), 41850–41855. https://doi.org/10.1074/jbc.M106252200
  • Unniraman, S., Prakash, R., & Nagaraja, V. (2002). Conserved economics of transcription termination in eubacteria. Nucleic Acids Research, 30(3), 675–684. https://doi.org/10.1093/nar/30.3.675
  • von Hippel, P. H. (1998). An integrated model of the transcription complex in elongation, termination, and editing. Science, 281(5377), 660–665. https://doi.org/10.1126/science.281.5377.660
  • von Hippel, P. H., & Yager, T. D. (1992). The elongation-termination decision in transcription. Science, 255(5046), 809–812. https://doi.org/10.1126/science.1536005
  • Wan, X. F., & Xu, D. (2005). Intrinsic terminator prediction and its application in Synechococcus sp. WH8102. Journal of Computer Science and Technology, 20(4), 465–482. https://doi.org/10.1007/s11390-005-0465-7
  • Wilson, K. S., & von Hippel, P. H. (1994). Stability of Escherichia coli transcription complexes near an intrinsic terminator. Journal of Molecular Biology, 244(1), 36–51. https://doi.org/10.1006/jmbi.1994.1702
  • Yager, T. D., & von Hippel, P. H. (1991). A thermodynamic analysis of RNA transcript elongation and termination in Escherichia coli. Biochemistry, 30(4), 1097–1118. https://doi.org/10.1021/bi00218a032
  • Zakov, S., Goldberg, Y., Elhadad, M., & Ziv-Ukelson, M. (2011). Rich parameterization improves RNA structure prediction. Journal of Computational Biology: A Journal of Computational Molecular Cell Biology, 18(11), 1525–1542. https://doi.org/10.1089/cmb.2011.0184
  • Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13), 3406–3415. https://doi.org/10.1093/nar/gkg595

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.