280
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Distinct characteristics of putative archaeal 5-methylcytosine RNA methyltransferases unveil their substrate specificities and evolutionary ancestries

, &
Received 30 Nov 2023, Accepted 25 Feb 2024, Published online: 07 Mar 2024

References

  • Aguilo, F., Li, S., Balasubramaniyan, N., Sancho, A., Benko, S., Zhang, F., Vashisht, A., Rengasamy, M., Andino, B., Chen, C.-H., Zhou, F., Qian, C., Zhou, M.-M., Wohlschlegel, J. A., Zhang, W., Suchy, F. J., & Walsh, M. J. (2016). Deposition of 5-methylcytosine on enhancer RNAs enables the coactivator function of PGC-1α. Cell Reports, 14(3), 479–492. https://doi.org/10.1016/j.celrep.2015.12.043
  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., & Ben-Tal, N. (2016). ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44(W1), W344–350. https://doi.org/10.1093/nar/gkw408
  • Auxilien, S., El Khadali, F., Rasmussen, A., Douthwaite, S., & Grosjean, H. (2007). Archease from Pyrococcus abyssi improves substrate specificity and solubility of a tRNA m5C methyltransferase. The Journal of Biological Chemistry, 282(26), 18711–18721. https://doi.org/10.1074/jbc.M607459200
  • Berman, H. M., Bhat, T. N., Bourne, P. E., Feng, Z., Gilliland, G., Weissig, H., & Westbrook, J. (2000). The Protein Data Bank and the challenge of structural genomics. Nature Structural Biology, 7 Suppl(11), 957–959. https://doi.org/10.1038/80734
  • Bhujbalrao, R., & Anand, R. (2019). Deciphering determinants in ribosomal methyltransferases that confer antimicrobial resistance. Journal of the American Chemical Society, 141(4), 1425–1429. https://doi.org/10.1021/jacs.8b10277
  • Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T. G., Bertoni, M., Bordoli, L., & Schwede, T. (2014). SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42(Web Server issue), W252–258. https://doi.org/10.1093/nar/gku340
  • Binkowski, T. A., Naghibzadeh, S., & Liang, J. (2003). CASTp: Computed atlas of surface topography of proteins. Nucleic Acids Research, 31(13), 3352–3355. https://doi.org/10.1093/nar/gkg512
  • Bohnsack, K. E., Höbartner, C., & Bohnsack, M. T. (2019). Eukaryotic 5-methylcytosine (m5C) RNA methyltransferases: Mechanisms, cellular functions, and links to disease. Genes, 10(2), 102. https://doi.org/10.3390/genes10020102
  • Brzezicha, B., Schmidt, M., Makalowska, I., Jarmolowski, A., Pienkowska, J., & Szweykowska-Kulinska, Z. (2006). Identification of human tRNA: M5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the anticodon of the pre-tRNA Leu (CAA). Nucleic Acids Research, 34(20), 6034–6043. https://doi.org/10.1093/nar/gkl765
  • Bujnicki, J. M., Feder, M., Ayres, C. L., & Redman, K. L. (2004). Sequence–structure–function studies of tRNA: M5C methyltransferase Trm4p and its relationship to DNA: M5C and RNA: M5U methyltransferases. Nucleic Acids Research, 32(8), 2453–2463. https://doi.org/10.1093/nar/gkl765
  • Canaves, J. M. (2004). Predicted role for the archease protein family based on structural and sequence analysis of TM1083 and MTH1598, two proteins structurally characterized through structural genomics efforts. Proteins, 56(1), 19–27. https://doi.org/10.1002/prot.20141
  • Chatterjee, A., Cui, Y., & Chatterjee, A. K. (2002). RsmA and the quorum-sensing signal, N-[3-oxohexanoyl]-L-homoserine lactone, control the levels of rsmB RNA in Erwinia carotovora subsp. carotovora by affecting its stability. Journal of Bacteriology, 184(15), 4089–4095. https://doi.org/10.1128/JB.184.15.4089-4095.2002
  • Chi, L., & Delgado-Olguín, P. (2013). Expression of NOL1/NOP2/sun domain (Nsun) RNA methyltransferase family genes in early mouse embryogenesis. Gene Expression Patterns: GEP, 13(8), 319–327. https://doi.org/10.1016/j.gep.2013.06.003
  • Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2016). GenBank. Nucleic Acids Research, 44(D1), D67–72. https://doi.org/10.1093/nar/gkv1276
  • Decatur, W. A., & Fournier, M. J. (2002). rRNA modifications and ribosome function. Trends in Biochemical Sciences, 27(7), 344–351. https://doi.org/10.1016/S0968-0004(02)02109-6
  • Demirci, H., Larsen, L. H., Hansen, T., Rasmussen, A., Cadambi, A., Gregory, S. T., Kirpekar, F., & Jogl, G. (2010). Multi-site-specific 16S rRNA methyltransferase RsmF from Thermus thermophilus. RNA, 16(8), 1584–1596. https://doi.org/10.1261/rna.2088310
  • Desai, K. K., Cheng, C. L., Bingman, C. A., Phillips, G. N., Jr., & Raines, R. T. (2014). A tRNA splicing operon: Archease endows RtcB with dual GTP/ATP cofactor specificity and accelerates RNA ligation. Nucleic Acids Research, 42(6), 3931–3942. https://doi.org/10.1093/nar/gkt1375
  • Edelheit, S., Schwartz, S., Mumbach, M. R., Wurtzel, O., & Sorek, R. (2013). Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs. PLoS Genetics, 9(6), e1003602. https://doi.org/10.1371/journal.pgen.1003602
  • El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., Potter, S. C., Qureshi, M., Richardson, L. J., Salazar, G. A., Smart, A., Sonnhammer, E. L. L., Hirsh, L., Paladin, L., Piovesan, D., Tosatto, S. C. E., & Finn, R. D. (2019). The Pfam protein families database in 2019. Nucleic Acids Research, 47(D1), D427–D432. https://doi.org/10.1093/nar/gky995
  • Emsley, P., Lohkamp, B., Scott, W. G., & Cowtan, K. (2010). Features and development of Coot. Acta Crystallographica. Section D, Biological Crystallography, 66(Pt 4), 486–501. https://doi.org/10.1107/S0907444910007493
  • Foster, P. G., Nunes, C. R., Greene, P., Moustakas, D., & Stroud, R. M. (2003). The first structure of an RNA m5C methyltransferase, Fmu, provides insight into catalytic mechanism and specific binding of RNA substrate. Structure, 11(12), 1609–1620. https://doi.org/10.1016/j.str.2003.10.014
  • Garcia-Vallvé, S., Palau, J., & Romeu, A. (1999). Horizontal gene transfer in glycosyl hydrolases inferred from codon usage in Escherichia coli and Bacillus subtilis. Molecular Biology and Evolution, 16(9), 1125–1134. https://doi.org/10.1093/oxfordjournals.molbev.a026203
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S. E., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. Humana press. https://doi.org/10.1385/1-59259-890-0:571
  • Gasteiger, J., & Marsili, M. (1980). Iterative partial equalization of orbital electronegativity—A rapid access to atomic charges. Tetrahedron, 36(22), 3219–3228. https://doi.org/10.1016/0040-4020(80)80168-2
  • Gopal, B., Haire, L. F., Cox, R. A., Colston, M. J., Major, S., Brannigan, J. A., Smerdon, S. J., & Dodson, G. (2000). The crystal structure of NusB from Mycobacterium tuberculosis. Nature Structural Biology, 7(6), 475–478. https://doi.org/10.1038/75876
  • Gouet, P., Robert, X., & Courcelle, E. (2003). ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Research, 31(13), 3320–3323. https://doi.org/10.1093/nar/gkg556
  • Gustafson, W. C., Taylor, C. W., Valdez, B. C., Henning, D., Phippard, A., Ren, Y., Busch, H., & Durban, E. (1998). Nucleolar protein p120 contains an arginine-rich domain that binds to ribosomal RNA. The Biochemical Journal, 331(Pt 2), 387–393. https://doi.org/10.1042/bj3310387
  • Hallberg, B. M., Ericsson, U. B., Johnson, K. A., Andersen, N. M., Douthwaite, S., Nordlund, P., Beuscher, I. V A. E., & Erlandsen, H. (2006). The structure of the RNA m5C methyltransferase YebU from Escherichia coli reveals a C-terminal RNA-recruiting PUA domain. Journal of Molecular Biology, 360(4), 774–787. https://doi.org/10.1016/j.jmb.2006.05.047
  • Hikida, Y., Kuratani, M., Bessho, Y., Sekine, S. I., & Yokoyama, S. (2010). Structure of an archaeal homologue of the bacterial Fmu/RsmB/RrmB rRNA cytosine 5-methyltransferase. Acta Crystallographica. Section D, Biological Crystallography, 66(Pt 12), 1301–1307. https://doi.org/10.1107/S0907444910037558
  • Holm, L. (2020). Using Dali for protein structure comparison. Methods in Molecular Biology, 2112, 29–42. https://doi.org/10.1007/978-1-0716-0270-6_3
  • Ishikawa, I., Sakai, N., Tamura, T., Yao, M., Watanabe, N., & Tanaka, I. (2004). Crystal structure of human p120 homologue protein PH1374 from Pyrococcus horikoshii. Proteins, 54(4), 814–816. https://doi.org/10.1002/prot.10645
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Källberg, M., Wang, H., Wang, S., Peng, J., Wang, Z., Lu, H., & Xu, J. (2012). Template-based protein structure modeling using the RaptorX web server. Nature Protocols, 7(8), 1511–1522. https://doi.org/10.1038/nprot.2012.085
  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053
  • Khade, P. M., & Jernigan, R. L. (2022). Entropies derived from the packing geometries within a single protein structure. ACS Omega, 7(24), 20719–20730. https://doi.org/10.1021/acsomega.2c00999
  • Khade, P. M., Scaramozzino, D., Kumar, A., Lacidogna, G., Carpinteri, A., & Jernigan, R. L. (2021). hdANM: A new comprehensive dynamics model for protein hinges. Biophysical Journal, 120(22), 4955–4965. 16 https://doi.org/10.1016/j.bpj.2021.10.017
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2021). PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388–D1395. https://doi.org/10.1093/nar/gkaa971
  • Kiss-László, Z., Henry, Y., Bachellerie, J. P., Caizergues-Ferrer, M., & Kiss, T. (1996). Site-specific ribose methylation of preribosomal RNA: A novel function for small nucleolar RNAs. Cell, 85(7), 1077–1088. https://doi.org/10.1016/s0092-8674(00)81308-2
  • Ko, J., Park, H., Heo, L., & Seok, C. (2012). GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Research, 40(Web Server issue), W294–W297. https://doi.org/10.1093/nar/gks493
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein–protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169
  • Krissinel, E., & Henrick, K. (2007). Protein interfaces, surfaces and assemblies service PISA at European Bioinformatics Institute. Journal of Molecular Biology, 372(3), 774–797. https://doi.org/10.1016/j.jmb.2007.05.022
  • Kumar, A., Khade, P. M., Dorman, K. S., & Jernigan, R. L. (2022). Coarse-graining protein structures into their dynamic communities with DCI, a dynamic community identifier. Bioinformatics, 38(10), 2727–2733. 15 https://doi.org/10.1093/bioinformatics/btac159
  • Kumar, J., Ranjan, T., Kumar, R. R., Ansar, M., Rajani, K., Kumar, M., Kumar, V., & Kumar, A. (2019). In silico characterization and homology Modelling of Potato Leaf Roll Virus (PLRV) coat protein. Current Journal of Applied Science and Technology, 33(2), 1–8. https://doi.org/10.9734/cjast/2019/v33i230054
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
  • Kuznetsova, S. A., Petrukov, K. S., Pletnev, F. I., Sergiev, P. V., & Dontsova, O. A. (2019). RNA (C5-cytosine) methyltransferases. Biochemistry. Biokhimiia, 84(8), 851–869. https://doi.org/10.1134/s0006297919080029
  • Letunic, I., & Bork, P. (2021). Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301
  • Li, J., Li, H., Long, T., Dong, H., Wang, E. D., & Liu, R. J. (2019). Archaeal NSUN6 catalyzes m5C72 modification on a wide-range of specific tRNAs. Nucleic Acids Research, 47(4), 2041–2055. https://doi.org/10.1093/nar/gky1236
  • Liu, R. J., Long, T., Li, J., Li, H., & Wang, E. D. (2017). Structural basis for substrate binding and catalytic mechanism of a human RNA: M5C methyltransferase NSun6. Nucleic Acids Research, 45(11), 6684–6697. https://doi.org/10.1093/nar/gkx473
  • Liu, X., Shen, S., Wu, P., Li, F., Liu, X., Wang, C., Gong, Q., Wu, J., Yao, X., Zhang, H., & Shi, Y. (2019). Structural insights into dimethylation of 12S rRNA by TFB1M: Indispensable role in translation of mitochondrial genes and mitochondrial function. Nucleic Acids Research, 47(14), 7648–7665. https://doi.org/10.1093/nar/gkz505
  • Mitchell, A. L., Attwood, T. K., Babbitt, P. C., Blum, M., Bork, P., Bridge, A., Brown, S. D., Chang, H.-Y., El-Gebali, S., Fraser, M. I., Gough, J., Haft, D. R., Huang, H., Letunic, I., Lopez, R., Luciani, A., Madeira, F., Marchler-Bauer, A., Mi, H., … Finn, R. D. (2019). InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Research, 47(D1), D351–D360. https://doi.org/10.1093/nar/gky1100
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Motorin, Y., Lyko, F., & Helm, M. (2010). 5-Methylcytosine in RNA: Detection, enzymatic formation and biological functions. Nucleic Acids Research, 38(5), 1415–1430. https://doi.org/10.1093/nar/gkp1117
  • Nakano, S., Suzuki, T., Kawarada, L., Iwata, H., Asano, K., & Suzuki, T. (2016). NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNA Met. Nature Chemical Biology, 12(7), 546–551. https://doi.org/10.1038/nchembio.2099
  • Ni, J., Tien, A. L., & Fournier, M. J. (1997). Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell, 89(4), 565–573. https://doi.org/10.1016/s0092-8674(00)80238-x
  • Nierhaus, K. H. (1991). The assembly of prokaryotic ribosomes. Biochimie, 73(6), 739–755. https://doi.org/10.1016/0300-9084(91)90054-5
  • Reid, R., Greene, P. J., & Santi, D. V. (1999). Exposition of a family of RNA m5C methyltransferases from searching genomic and proteomic sequences. Nucleic Acids Research, 27(15), 3138–3145. https://doi.org/10.1093/nar/27.15.3138
  • Richardson, E. J., & Watson, M. (2013). The automatic annotation of bacterial genomes. Briefings in Bioinformatics, 14(1), 1–12. https://doi.org/10.1093/bib/bbs007
  • Schaefer, M. (2015). RNA 5-methylcytosine analysis by bisulfite sequencing. Methods in Enzymology, 560, 297–329. https://doi.org/10.1016/bs.mie.2015.03.007
  • Schosserer, M., Minois, N., Angerer, T. B., Amring, M., Dellago, H., Harreither, E., Calle-Perez, A., Pircher, A., Gerstl, M. P., Pfeifenberger, S., Brandl, C., Sonntagbauer, M., Kriegner, A., Linder, A., Weinhäusel, A., Mohr, T., Steiger, M., Mattanovich, D., Rinnerthaler, M., … Grillari, J. (2015). Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Nature Communications, 6(1), 1–7. https://doi.org/10.1038/ncomms7158
  • Sergiev, P. V., Aleksashin, N. A., Chugunova, A. A., Polikanov, Y. S., & Dontsova, O. A. (2018). Structural and evolutionary insights into ribosomal RNA methylation. Nature Chemical Biology, 14(3), 226–235. https://doi.org/10.1038/nchembio.2569
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303
  • Sharma, S., Yang, J., Watzinger, P., Kötter, P., & Entian, K. D. (2013). Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively. Nucleic Acids Research, 41(19), 9062–9076. https://doi.org/10.1093/nar/gkt679
  • Sievers, F., & Higgins, D. G. (2014). Clustal Omega, accurate alignment of very large numbers of sequences. Methods in Molecular Biology, 1079, 105–116. https://doi.org/10.1007/978-1-62703-646-7_6
  • Spåhr, H., Habermann, B., Gustafsson, C. M., Larsson, N. G., & Hallberg, B. M. (2012). Structure of the human MTERF4–NSUN4 protein complex that regulates mitochondrial ribosome biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 109(38), 15253–15258. https://doi.org/10.1073/pnas.1210688109
  • Staub, E., Fiziev, P., Rosenthal, A., & Hinzmann, B. (2004). Insights into the evolution of the nucleolus by an analysis of its protein domain repertoire. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 26(5), 567–581. https://doi.org/10.1002/bies.20032
  • Sumathi, K., Ananthalakshmi, P., Roshan, M. M., & Sekar, K. (2006). 3dSS: 3D structural superposition. Nucleic Acids Research, 34(Web Server issue), W128–132. https://doi.org/10.1093/nar/gkl036
  • Sunita, S., Tkaczuk, K. L., Purta, E., Kasprzak, J. M., Douthwaite, S., Bujnicki, J. M., & Sivaraman, J. (2008). Crystal structure of the Escherichia coli 23S rRNA: M5C methyltransferase RlmI (YccW) reveals evolutionary links between RNA modification enzymes. Journal of Molecular Biology, 383(3), 652–666. https://doi.org/10.1016/j.jmb.2008.08.062
  • Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. V (2019). STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131
  • Taboada, B., Estrada, K., Ciria, R., & Merino, E. (2018). Operon-mapper: A web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics, 34(23), 4118–4120. https://doi.org/10.1093/bioinformatics/bty496
  • The UniProt Consortium. (2021). UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research. 49(D1), D480–D489. https://doi.org/10.1093/nar/gkaa1100
  • Trixl, L., & Lusser, A. (2019). The dynamic RNA modification 5‐methylcytosine and its emerging role as an epitranscriptomic mark. WIREs RNA, 10(1), e1510. https://doi.org/10.1002/wrna.1510
  • Urbonavicius, J., Auxilien, S., Walbott, H., Trachana, K., Golinelli-Pimpaneau, B., Brochier-Armanet, C., & Grosjean, H. (2008). Acquisition of a bacterial RumA‐type tRNA (uracil‐54, C5)‐methyltransferase by Archaea through an ancient horizontal gene transfer. Molecular Microbiology, 67(2), 323–335. https://doi.org/10.1111/j.1365-2958.2007.06047.x
  • Walbott, H., Husson, C., Auxilien, S., & Golinelli-Pimpaneau, B. (2007). Cysteine of sequence motif VI is essential for nucleophilic catalysis by yeast tRNA m5C methyltransferase. RNA, 13(7), 967–973. https://doi.org/10.1261/rna.515707
  • Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12(1), 7–8. https://doi.org/10.1038/nmeth.3213

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.